Suppr超能文献

大鼠枕叶和颞叶视觉皮层的功能特化

Functional specialization in rat occipital and temporal visual cortex.

作者信息

Vermaercke Ben, Gerich Florian J, Ytebrouck Ellen, Arckens Lutgarde, Op de Beeck Hans P, Van den Bergh Gert

机构信息

Laboratory of Biological Psychology, KU Leuven, Leuven, Belgium; and.

Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven, Leuven, Belgium.

出版信息

J Neurophysiol. 2014 Oct 15;112(8):1963-83. doi: 10.1152/jn.00737.2013. Epub 2014 Jul 2.

Abstract

Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. Anatomically, suggestions have been made about the existence of hierarchical pathways with similarities to the ventral and dorsal pathways in primates. Here we aimed to characterize some important functional properties in part of the supposed "ventral" pathway in rats. We investigated the functional properties along a progression of five visual areas in awake rats, from primary visual cortex (V1) over lateromedial (LM), latero-intermediate (LI), and laterolateral (LL) areas up to the newly found lateral occipito-temporal cortex (TO). Response latency increased >20 ms from areas V1/LM/LI to areas LL and TO. Orientation and direction selectivity for the used grating patterns increased gradually from V1 to TO. Overall responsiveness and selectivity to shape stimuli decreased from V1 to TO and was increasingly dependent upon shape motion. Neural similarity for shapes could be accounted for by a simple computational model in V1, but not in the other areas. Across areas, we find a gradual change in which stimulus pairs are most discriminable. Finally, tolerance to position changes increased toward TO. These findings provide unique information about possible commonalities and differences between rodents and primates in hierarchical cortical processing.

摘要

最近的研究揭示了啮齿动物视觉皮层中惊人程度的功能特化。在解剖学上,有人提出存在与灵长类动物腹侧和背侧通路相似的层级通路。在此,我们旨在描述大鼠假定“腹侧”通路部分的一些重要功能特性。我们研究了清醒大鼠从初级视觉皮层(V1)经过内外侧(LM)、中外侧(LI)和外外侧(LL)区域直至新发现的枕颞外侧皮层(TO)的五个视觉区域连续进程中的功能特性。从V1/LM/LI区域到LL和TO区域,反应潜伏期增加超过20毫秒。对所使用光栅图案的方向和方向选择性从V1到TO逐渐增加。对形状刺激的总体反应性和选择性从V1到TO降低,并且越来越依赖于形状运动。形状的神经相似性在V1中可以由一个简单的计算模型解释,但在其他区域则不然。在各个区域中,我们发现最容易区分的刺激对存在逐渐变化。最后,对位置变化的耐受性向TO方向增加。这些发现提供了关于啮齿动物和灵长类动物在层级皮层处理中可能的共性和差异的独特信息。

相似文献

1
Functional specialization in rat occipital and temporal visual cortex.
J Neurophysiol. 2014 Oct 15;112(8):1963-83. doi: 10.1152/jn.00737.2013. Epub 2014 Jul 2.
4
Nonlinear Processing of Shape Information in Rat Lateral Extrastriate Cortex.
J Neurosci. 2019 Feb 27;39(9):1649-1670. doi: 10.1523/JNEUROSCI.1938-18.2018. Epub 2019 Jan 7.
5
Activity in Lateral Visual Areas Contributes to Surround Suppression in Awake Mouse V1.
Curr Biol. 2019 Dec 16;29(24):4268-4275.e7. doi: 10.1016/j.cub.2019.10.037. Epub 2019 Nov 27.
6
Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1.
Front Neural Circuits. 2013 Sep 23;7:143. doi: 10.3389/fncir.2013.00143. eCollection 2013.
7
Functional characterization and spatial clustering of visual cortical neurons in the predatory grasshopper mouse .
J Neurophysiol. 2017 Mar 1;117(3):910-918. doi: 10.1152/jn.00779.2016. Epub 2016 Dec 7.
8
Direction and orientation selectivity of neurons in visual area MT of the macaque.
J Neurophysiol. 1984 Dec;52(6):1106-30. doi: 10.1152/jn.1984.52.6.1106.

引用本文的文献

1
A compressed hierarchy for visual form processing in the tree shrew.
Nature. 2025 Aug 27. doi: 10.1038/s41586-025-09441-w.
2
Unraveling the complexity of rat object vision requires a full convolutional network and beyond.
Patterns (N Y). 2025 Jan 17;6(2):101149. doi: 10.1016/j.patter.2024.101149. eCollection 2025 Feb 14.
4
Strategically managing learning during perceptual decision making.
Elife. 2023 Feb 14;12:e64978. doi: 10.7554/eLife.64978.
5
Marmoset core visual object recognition behavior is comparable to that of macaques and humans.
iScience. 2022 Dec 10;26(1):105788. doi: 10.1016/j.isci.2022.105788. eCollection 2023 Jan 20.
6
Efficient processing of natural scenes in visual cortex.
Front Cell Neurosci. 2022 Dec 5;16:1006703. doi: 10.3389/fncel.2022.1006703. eCollection 2022.
7
Seeing the Forest for the Trees, and the Ground Below My Beak: Global and Local Processing in the Pigeon's Visual System.
Front Psychol. 2022 Jun 9;13:888528. doi: 10.3389/fpsyg.2022.888528. eCollection 2022.
8
10
Anatomical and functional connectomes underlying hierarchical visual processing in mouse visual system.
Brain Struct Funct. 2022 May;227(4):1297-1315. doi: 10.1007/s00429-021-02415-4. Epub 2021 Nov 30.

本文引用的文献

1
Multifeatural shape processing in rats engaged in invariant visual object recognition.
J Neurosci. 2013 Apr 3;33(14):5939-56. doi: 10.1523/JNEUROSCI.3629-12.2013.
2
Precedence of the eye region in neural processing of faces.
J Neurosci. 2012 Nov 21;32(47):16666-82. doi: 10.1523/JNEUROSCI.2391-12.2012.
4
How does the brain solve visual object recognition?
Neuron. 2012 Feb 9;73(3):415-34. doi: 10.1016/j.neuron.2012.01.010.
5
Transformation-tolerant object recognition in rats revealed by visual priming.
J Neurosci. 2012 Jan 4;32(1):21-34. doi: 10.1523/JNEUROSCI.3932-11.2012.
6
A multivariate approach reveals the behavioral templates underlying visual discrimination in rats.
Curr Biol. 2012 Jan 10;22(1):50-5. doi: 10.1016/j.cub.2011.11.041. Epub 2011 Dec 29.
7
Functional specialization of seven mouse visual cortical areas.
Neuron. 2011 Dec 22;72(6):1040-54. doi: 10.1016/j.neuron.2011.12.004.
8
Functional specialization of mouse higher visual cortical areas.
Neuron. 2011 Dec 22;72(6):1025-39. doi: 10.1016/j.neuron.2011.11.013.
9
Distinct mechanisms for coding of visual actions in macaque temporal cortex.
J Neurosci. 2011 Jan 12;31(2):385-401. doi: 10.1523/JNEUROSCI.2703-10.2011.
10
A self-calibrating, camera-based eye tracker for the recording of rodent eye movements.
Front Neurosci. 2010 Nov 29;4:193. doi: 10.3389/fnins.2010.00193. eCollection 2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验