Suppr超能文献

猫初级听觉皮层神经元的多维感受野处理

Multidimensional receptive field processing by cat primary auditory cortical neurons.

作者信息

Atencio Craig A, Sharpee Tatyana O

机构信息

Coleman Memorial Laboratory, UCSF Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Department of Otolaryngology-HNS, University of California, San Francisco, USA.

Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA; Center for Theoretical Biological Physics and Department of Physics, University of California, San Diego, La Jolla, CA, USA.

出版信息

Neuroscience. 2017 Sep 17;359:130-141. doi: 10.1016/j.neuroscience.2017.07.003. Epub 2017 Jul 8.

Abstract

The receptive fields of many auditory cortical neurons are multidimensional and are best represented by more than one stimulus feature. The number of these dimensions, their characteristics, and how they differ with stimulus context have been relatively unexplored. Standard methods that are often used to characterize multidimensional stimulus selectivity, such as spike-triggered covariance (STC) or maximally informative dimensions (MIDs), are either limited to Gaussian stimuli or are only able to recover a small number of stimulus features due to data limitations. An information theoretic extension of STC, the maximum noise entropy (MNE) model, can be used with non-Gaussian stimulus distributions to find an arbitrary number of stimulus dimensions. When we applied the MNE model to auditory cortical neurons, we often found more than two stimulus features that influenced neuronal firing. Excitatory and suppressive features coded different acoustic contexts: excitatory features encoded higher temporal and spectral modulations, while suppressive features had lower modulation frequency preferences. We found that the excitatory and suppressive features themselves were sensitive to stimulus context when we employed two stimuli that differed only in their short-term correlation structure: while the linear features were similar, the secondary features were strongly affected by stimulus statistics. These results show that multidimensional receptive field processing is influenced by feature type and stimulus context.

摘要

许多听觉皮层神经元的感受野是多维的,并且最好用不止一种刺激特征来表示。这些维度的数量、它们的特征以及它们如何随刺激背景而变化,相对来说还未被充分探索。常用于表征多维刺激选择性的标准方法,如峰触发协方差(STC)或最大信息维度(MIDs),要么仅限于高斯刺激,要么由于数据限制只能恢复少数刺激特征。STC的一种信息理论扩展,即最大噪声熵(MNE)模型,可以与非高斯刺激分布一起使用,以找到任意数量的刺激维度。当我们将MNE模型应用于听觉皮层神经元时,我们经常发现有两个以上影响神经元放电的刺激特征。兴奋性和抑制性特征编码不同的声学背景:兴奋性特征编码更高的时间和频谱调制,而抑制性特征具有较低的调制频率偏好。当我们使用仅在短期相关结构上不同的两种刺激时,我们发现兴奋性和抑制性特征本身对刺激背景敏感:虽然线性特征相似,但次要特征受到刺激统计的强烈影响。这些结果表明,多维感受野处理受特征类型和刺激背景的影响。

相似文献

1
Multidimensional receptive field processing by cat primary auditory cortical neurons.
Neuroscience. 2017 Sep 17;359:130-141. doi: 10.1016/j.neuroscience.2017.07.003. Epub 2017 Jul 8.
3
Functional congruity in local auditory cortical microcircuits.
Neuroscience. 2016 Mar 1;316:402-19. doi: 10.1016/j.neuroscience.2015.12.057. Epub 2016 Jan 5.
4
Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics.
Neuroscience. 2021 Jul 15;467:150-170. doi: 10.1016/j.neuroscience.2021.04.028. Epub 2021 May 2.
5
Online stimulus optimization rapidly reveals multidimensional selectivity in auditory cortical neurons.
J Neurosci. 2014 Jul 2;34(27):8963-75. doi: 10.1523/JNEUROSCI.0260-14.2014.
6
Cooperative nonlinearities in auditory cortical neurons.
Neuron. 2008 Jun 26;58(6):956-66. doi: 10.1016/j.neuron.2008.04.026.
7
Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.
PLoS Comput Biol. 2016 Nov 11;12(11):e1005113. doi: 10.1371/journal.pcbi.1005113. eCollection 2016 Nov.
8
Columnar connectivity and laminar processing in cat primary auditory cortex.
PLoS One. 2010 Mar 3;5(3):e9521. doi: 10.1371/journal.pone.0009521.
9
Stimulus-invariant processing and spectrotemporal reverse correlation in primary auditory cortex.
J Comput Neurosci. 2006 Apr;20(2):111-36. doi: 10.1007/s10827-005-3589-4. Epub 2006 Feb 20.
10
Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex.
PLoS One. 2012;7(2):e31537. doi: 10.1371/journal.pone.0031537. Epub 2012 Feb 27.

引用本文的文献

1
Receptive-field nonlinearities in primary auditory cortex: a comparative perspective.
Cereb Cortex. 2024 Sep 3;34(9). doi: 10.1093/cercor/bhae364.
2
Bidirectional generative adversarial representation learning for natural stimulus synthesis.
J Neurophysiol. 2024 Oct 1;132(4):1156-1169. doi: 10.1152/jn.00421.2023. Epub 2024 Aug 28.
3
Acoustic and language-specific sources for phonemic abstraction from speech.
Nat Commun. 2024 Jan 23;15(1):677. doi: 10.1038/s41467-024-44844-9.
4
A sparse code for natural sound context in auditory cortex.
Curr Res Neurobiol. 2023 Nov 29;6:100118. doi: 10.1016/j.crneur.2023.100118. eCollection 2024.
5
Composite receptive fields in the mouse auditory cortex.
J Physiol. 2023 Sep;601(18):4091-4104. doi: 10.1113/JP285003. Epub 2023 Aug 14.
6
Linking neural responses to behavior with information-preserving population vectors.
Curr Opin Behav Sci. 2019 Oct;29:37-44. doi: 10.1016/j.cobeha.2019.03.004. Epub 2019 May 9.
7
Plasticity of Multidimensional Receptive Fields in Core Rat Auditory Cortex Directed by Sound Statistics.
Neuroscience. 2021 Jul 15;467:150-170. doi: 10.1016/j.neuroscience.2021.04.028. Epub 2021 May 2.
9
Recent advances in understanding the auditory cortex.
F1000Res. 2018 Sep 26;7. doi: 10.12688/f1000research.15580.1. eCollection 2018.
10
Incorporating behavioral and sensory context into spectro-temporal models of auditory encoding.
Hear Res. 2018 Mar;360:107-123. doi: 10.1016/j.heares.2017.12.021. Epub 2017 Dec 31.

本文引用的文献

1
Network Receptive Field Modeling Reveals Extensive Integration and Multi-feature Selectivity in Auditory Cortical Neurons.
PLoS Comput Biol. 2016 Nov 11;12(11):e1005113. doi: 10.1371/journal.pcbi.1005113. eCollection 2016 Nov.
2
Central auditory neurons have composite receptive fields.
Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):1441-6. doi: 10.1073/pnas.1506903113. Epub 2016 Jan 19.
3
Hidden complexity of synaptic receptive fields in cat V1.
J Neurosci. 2014 Apr 16;34(16):5515-28. doi: 10.1523/JNEUROSCI.0474-13.2014.
4
Auditory cortical local subnetworks are characterized by sharply synchronous activity.
J Neurosci. 2013 Nov 20;33(47):18503-14. doi: 10.1523/JNEUROSCI.2014-13.2013.
5
Spike triggered covariance in strongly correlated gaussian stimuli.
PLoS Comput Biol. 2013;9(9):e1003206. doi: 10.1371/journal.pcbi.1003206. Epub 2013 Sep 5.
6
Spectrotemporal contrast kernels for neurons in primary auditory cortex.
J Neurosci. 2012 Aug 15;32(33):11271-84. doi: 10.1523/JNEUROSCI.1715-12.2012.
7
Spike-triggered covariance: geometric proof, symmetry properties, and extension beyond Gaussian stimuli.
J Comput Neurosci. 2013 Feb;34(1):137-61. doi: 10.1007/s10827-012-0411-y. Epub 2012 Jul 15.
8
Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex.
PLoS One. 2012;7(2):e31537. doi: 10.1371/journal.pone.0031537. Epub 2012 Feb 27.
9
Receptive field dimensionality increases from the auditory midbrain to cortex.
J Neurophysiol. 2012 May;107(10):2594-603. doi: 10.1152/jn.01025.2011. Epub 2012 Feb 8.
10
Second order dimensionality reduction using minimum and maximum mutual information models.
PLoS Comput Biol. 2011 Oct;7(10):e1002249. doi: 10.1371/journal.pcbi.1002249. Epub 2011 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验