Hearing Research Center and Department of Biomedical Engineering, Boston University , Boston, Massachusetts 02215.
Department of Mathematics and Statistics, Boston University , Boston, Massachusetts 02215.
eNeuro. 2016 Sep 1;3(4). doi: 10.1523/ENEURO.0124-16.2016. eCollection 2016 Jul-Aug.
Although sensory cortex is thought to be important for the perception of complex objects, its specific role in representing complex stimuli remains unknown. Complex objects are rich in information along multiple stimulus dimensions. The position of cortex in the sensory hierarchy suggests that cortical neurons may integrate across these dimensions to form a more gestalt representation of auditory objects. Yet, studies of cortical neurons typically explore single or few dimensions due to the difficulty of determining optimal stimuli in a high dimensional stimulus space. Evolutionary algorithms (EAs) provide a potentially powerful approach for exploring multidimensional stimulus spaces based on real-time spike feedback, but two important issues arise in their application. First, it is unclear whether it is necessary to characterize cortical responses to multidimensional stimuli or whether it suffices to characterize cortical responses to a single dimension at a time. Second, quantitative methods for analyzing complex multidimensional data from an EA are lacking. Here, we apply a statistical method for nonlinear regression, the generalized additive model (GAM), to address these issues. The GAM quantitatively describes the dependence between neural response and all stimulus dimensions. We find that auditory cortical neurons in mice are sensitive to interactions across dimensions. These interactions are diverse across the population, indicating significant integration across stimulus dimensions in auditory cortex. This result strongly motivates using multidimensional stimuli in auditory cortex. Together, the EA and the GAM provide a novel quantitative paradigm for investigating neural coding of complex multidimensional stimuli in auditory and other sensory cortices.
虽然感觉皮层被认为对复杂物体的感知很重要,但它在表示复杂刺激方面的具体作用仍不清楚。复杂物体在多个刺激维度上都具有丰富的信息。皮层在感觉层次结构中的位置表明,皮层神经元可能会跨这些维度进行整合,从而形成对听觉物体的更整体的表示。然而,由于在高维刺激空间中确定最佳刺激具有难度,皮层神经元的研究通常只探索单个或少数几个维度。进化算法(Evolutionary algorithms,EAs)为基于实时尖峰反馈探索多维刺激空间提供了一种潜在的强大方法,但在其应用中出现了两个重要问题。首先,尚不清楚是否有必要对多维刺激下的皮层反应进行特征描述,或者是否足以每次对一个维度的皮层反应进行特征描述。其次,用于从 EA 分析复杂多维数据的定量方法尚缺乏。在这里,我们应用一种用于非线性回归的统计方法,广义加性模型(Generalized additive model,GAM)来解决这些问题。GAM 定量描述了神经反应与所有刺激维度之间的依赖性。我们发现,小鼠的听觉皮层神经元对跨维度的相互作用敏感。这些相互作用在群体中多种多样,表明在听觉皮层中存在跨刺激维度的显著整合。这一结果强烈促使我们在听觉皮层中使用多维刺激。EA 和 GAM 共同为研究听觉和其他感觉皮层中复杂多维刺激的神经编码提供了一种新颖的定量范例。