Suppr超能文献

Akt 依赖性的 mTORC1 复合物的激活涉及 IKKα(IκB 激酶 α)对 mTOR(雷帕霉素的哺乳动物靶标)的磷酸化。

Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IκB kinase α (IKKα).

机构信息

From the Lineberger Comprehensive Cancer Center University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201.

From the Lineberger Comprehensive Cancer Center University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.

出版信息

J Biol Chem. 2014 Sep 5;289(36):25227-40. doi: 10.1074/jbc.M114.554881. Epub 2014 Jul 2.

Abstract

The serine/threonine protein kinase Akt promotes cell survival, growth, and proliferation through phosphorylation of different downstream substrates. A key effector of Akt is the mammalian target of rapamycin (mTOR). Akt is known to stimulate mTORC1 activity through phosphorylation of tuberous sclerosis complex 2 (TSC2) and PRAS40, both negative regulators of mTOR activity. We previously reported that IκB kinase α (IKKα), a component of the kinase complex that leads to NF-κB activation, plays an important role in promoting mTORC1 activity downstream of activated Akt. Here, we demonstrate IKKα-dependent regulation of mTORC1 using multiple PTEN null cancer cell lines and an animal model with deletion of IKKα. Importantly, IKKα is shown to phosphorylate mTOR at serine 1415 in a manner dependent on Akt to promote mTORC1 activity. These results demonstrate that IKKα is an effector of Akt in promoting mTORC1 activity.

摘要

丝氨酸/苏氨酸蛋白激酶 Akt 通过磷酸化不同的下游底物促进细胞存活、生长和增殖。Akt 的一个关键效应物是雷帕霉素靶蛋白(mTOR)。已知 Akt 通过磷酸化雷帕霉素靶蛋白复合物 2(TSC2)和 PRAS40 来刺激 mTORC1 活性,这两者都是 mTOR 活性的负调节剂。我们之前曾报道过,IKKα(一种导致 NF-κB 激活的激酶复合物的组成部分)在 Akt 激活下游促进 mTORC1 活性方面发挥着重要作用。在这里,我们使用多种 PTEN 缺失的癌细胞系和 IKKα 缺失的动物模型证明了 IKKα 对 mTORC1 的依赖性调节。重要的是,研究表明 IKKα 通过 Akt 依赖性方式将 mTOR 磷酸化在丝氨酸 1415 位以促进 mTORC1 活性。这些结果表明 IKKα 是 Akt 促进 mTORC1 活性的效应物。

相似文献

3
Differential IKK/NF-κB Activity Is Mediated by TSC2 through mTORC1 in PTEN-Null Prostate Cancer and Tuberous Sclerosis Complex Tumor Cells.
Mol Cancer Res. 2015 Dec;13(12):1602-14. doi: 10.1158/1541-7786.MCR-15-0213. Epub 2015 Sep 15.
4
RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.
Cell Signal. 2014 Mar;26(3):461-7. doi: 10.1016/j.cellsig.2013.11.035. Epub 2013 Dec 3.
5
mTORC2 is required for proliferation and survival of TSC2-null cells.
Mol Cell Biol. 2011 Jun;31(12):2484-98. doi: 10.1128/MCB.01061-10. Epub 2011 Apr 11.
10
mTORC1 and mTORC2 regulate insulin secretion through Akt in INS-1 cells.
J Endocrinol. 2013 Jan 2;216(1):21-9. doi: 10.1530/JOE-12-0351. Print 2013 Jan.

引用本文的文献

1
A mechanistic computational model of HGF-VEGF-mediated endothelial cell proliferation and vascular permeability.
iScience. 2025 Jul 24;28(8):113199. doi: 10.1016/j.isci.2025.113199. eCollection 2025 Aug 15.
2
Molecular Pathways and Targeted Therapies in Relapsed/Refractory Diffuse Large B-Cell Lymphoma (DLBCL).
Cancers (Basel). 2025 Jul 11;17(14):2314. doi: 10.3390/cancers17142314.
4
Protein Kinases as Mediators for miRNA Modulation of Neuropathic Pain.
Cells. 2025 Apr 11;14(8):577. doi: 10.3390/cells14080577.
5
Tsc1 deletion in Purkinje neurons disrupts the axon initial segment, impairing excitability and cerebellar function.
Neurobiol Dis. 2025 Apr;207:106856. doi: 10.1016/j.nbd.2025.106856. Epub 2025 Feb 25.
10
Blockade of mTORC1 via Rapamycin Suppresses 27-Hydroxycholestrol-Induced Inflammatory Responses.
Int J Mol Sci. 2024 Sep 26;25(19):10381. doi: 10.3390/ijms251910381.

本文引用的文献

1
Nutrient signaling to mTOR and cell growth.
Trends Biochem Sci. 2013 May;38(5):233-42. doi: 10.1016/j.tibs.2013.01.004. Epub 2013 Mar 1.
2
IκB kinase α phosphorylation of TRAF4 downregulates innate immune signaling.
Mol Cell Biol. 2012 Jul;32(13):2479-89. doi: 10.1128/MCB.00106-12. Epub 2012 Apr 30.
3
Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer.
Immunol Rev. 2012 Mar;246(1):327-45. doi: 10.1111/j.1600-065X.2012.01095.x.
4
p85α SH2 domain phosphorylation by IKK promotes feedback inhibition of PI3K and Akt in response to cellular starvation.
Mol Cell. 2012 Mar 30;45(6):719-30. doi: 10.1016/j.molcel.2012.01.010. Epub 2012 Feb 16.
5
NF-κB, the first quarter-century: remarkable progress and outstanding questions.
Genes Dev. 2012 Feb 1;26(3):203-34. doi: 10.1101/gad.183434.111.
6
The diverse and complex roles of NF-κB subunits in cancer.
Nat Rev Cancer. 2012 Jan 19;12(2):121-32. doi: 10.1038/nrc3204.
7
IKKα activation of NOTCH links tumorigenesis via FOXA2 suppression.
Mol Cell. 2012 Jan 27;45(2):171-84. doi: 10.1016/j.molcel.2011.11.018. Epub 2011 Dec 22.
8
AMPK and mTOR in cellular energy homeostasis and drug targets.
Annu Rev Pharmacol Toxicol. 2012;52:381-400. doi: 10.1146/annurev-pharmtox-010611-134537. Epub 2011 Oct 17.
9
Inflammation meets cancer, with NF-κB as the matchmaker.
Nat Immunol. 2011 Jul 19;12(8):715-23. doi: 10.1038/ni.2060.
10
mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression.
Mol Cell Biol. 2011 Jul;31(14):2787-801. doi: 10.1128/MCB.05437-11. Epub 2011 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验