Suppr超能文献

围绕人诺如病毒多聚蛋白切割位点的p4-p2'氨基酸定义了调节自我加工顺序的核心序列。

The p4-p2' amino acids surrounding human norovirus polyprotein cleavage sites define the core sequence regulating self-processing order.

作者信息

May Jared, Viswanathan Prasanth, Ng Kenneth K-S, Medvedev Alexei, Korba Brent

机构信息

Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, USA.

Department of Biological Sciences and Alberta Glycomics Centre, University of Calgary, Calgary, Alberta, Canada.

出版信息

J Virol. 2014 Sep;88(18):10738-47. doi: 10.1128/JVI.01357-14. Epub 2014 Jul 2.

Abstract

UNLABELLED

Noroviruses (NoV) are members of the family Caliciviridae. The human NoV open reading frame 1 (ORF1) encodes a 200-kDa polyprotein which is cleaved by the viral 20-kDa 3C-like protease (Pro, NS6) into 6 nonstructural proteins that are necessary for viral replication. The NoV ORF1 polyprotein is processed in a specific order, with "early" sites (NS1/2-3 and NS3-4) being cleaved rapidly and three "late" sites (NS4-5, NS5-6, and NS6-7) processed subsequently and less efficiently. Previously, we demonstrated that the NoV polyprotein processing order is directly correlated with the efficiency of the enzyme, which is regulated by the primary amino acid sequences surrounding ORF1 cleavage sites. Using fluorescence resonance energy transfer (FRET) peptides representing the NS2-3 and NS6-7 ORF1 cleavage sites, we now demonstrate that the amino acids spanning positions P4 to P2' (P4-P2') surrounding each site comprise the core sequence controlling NoV protease enzyme efficiency. Furthermore, the NoV polyprotein self-processing order can be altered by interchanging this core sequence between NS2-3 and any of the three late sites in in vitro transcription-translation assays. We also demonstrate that the nature of the side chain at the P3 position for the NS1/2-3 (Nterm/NTPase) site confers significant influence on enzyme catalysis (kcat and kcat/Km), a feature overlooked in previous structural studies. Molecular modeling provides possible explanations for the P3 interactions with NoV protease.

IMPORTANCE

Noroviruses (NoV) are the prevailing cause of nonbacterial acute gastroenteritis worldwide and pose a significant financial burden on health care systems. Proteolytic processing of the viral nonstructural polyprotein is required for norovirus replication. Previously, the core sequence of amino acids surrounding the scissile bonds responsible for governing the relative processing order had not been determined. Using both FRET-based peptides and full-length NoV polyprotein, we have successfully demonstrated that the core sequences spanning positions P4-P2' surrounding the NS2-3, NS4-5, NS5-6, and NS6-7 cleavage sites contain all of the structural information necessary to control processing order. We also provide insight into a previously overlooked role for the NS2-3 P3 residue in enzyme efficiency. This article builds upon our previous studies on NoV protease enzymatic activities and polyprotein processing order. Our work provides significant additional insight into understanding viral polyprotein processing and has important implications for improving the design of inhibitors targeting the NoV protease.

摘要

未标记

诺如病毒(NoV)是杯状病毒科的成员。人类诺如病毒开放阅读框1(ORF1)编码一种200 kDa的多聚蛋白,该多聚蛋白被病毒20 kDa的3C样蛋白酶(Pro,NS6)切割成6种非结构蛋白,这些蛋白是病毒复制所必需的。诺如病毒ORF1多聚蛋白按特定顺序进行加工,“早期”位点(NS1/2 - 3和NS3 - 4)快速切割,随后三个“晚期”位点(NS4 - 5、NS5 - 6和NS6 - 7)加工,效率较低。此前,我们证明诺如病毒多聚蛋白的加工顺序与酶的效率直接相关,而酶的效率受ORF1切割位点周围的一级氨基酸序列调控。使用代表NS2 - 3和NS6 - 7 ORF1切割位点的荧光共振能量转移(FRET)肽,我们现在证明每个位点周围P4至P2'(P4 - P2')位置的氨基酸构成控制诺如病毒蛋白酶酶效率的核心序列。此外,在体外转录 - 翻译试验中,通过在NS2 - 3和三个晚期位点中的任何一个之间互换该核心序列,可以改变诺如病毒多聚蛋白的自我加工顺序。我们还证明,NS1/2 - 3(Nterm/NTPase)位点P3位置侧链的性质对酶催化(kcat和kcat/Km)有显著影响,这一特征在以前的结构研究中被忽视。分子建模为P3与诺如病毒蛋白酶的相互作用提供了可能的解释。

重要性

诺如病毒(NoV)是全球非细菌性急性胃肠炎的主要病因,给医疗保健系统带来巨大经济负担。诺如病毒复制需要病毒非结构多聚蛋白的蛋白水解加工。此前,负责控制相对加工顺序的可裂解键周围氨基酸的核心序列尚未确定。使用基于FRET的肽和全长诺如病毒多聚蛋白,我们成功证明NS2 - 3、NS4 - 5、NS5 - 6和NS6 - 7切割位点周围P4 - P2'位置的核心序列包含控制加工顺序所需的所有结构信息。我们还深入了解了NS2 - 3 P3残基在酶效率方面以前被忽视的作用。本文基于我们之前对诺如病毒蛋白酶酶活性和多聚蛋白加工顺序的研究。我们的工作为理解病毒多聚蛋白加工提供了重要的额外见解,对改进靶向诺如病毒蛋白酶的抑制剂设计具有重要意义。

相似文献

3
Enzyme kinetics of the human norovirus protease control virus polyprotein processing order.
Virology. 2013 Sep;444(1-2):218-24. doi: 10.1016/j.virol.2013.06.013. Epub 2013 Jul 11.
4
Selective Polyprotein Processing Determines Norovirus Sensitivity to Trim7.
J Virol. 2022 Sep 14;96(17):e0070722. doi: 10.1128/jvi.00707-22. Epub 2022 Aug 16.
7
Functional characterization of the cleavage specificity of the sapovirus chymotrypsin-like protease.
J Virol. 2008 Aug;82(16):8085-93. doi: 10.1128/JVI.00693-08. Epub 2008 Jun 11.
8
Structure of a murine norovirus NS6 protease-product complex revealed by adventitious crystallisation.
PLoS One. 2012;7(6):e38723. doi: 10.1371/journal.pone.0038723. Epub 2012 Jun 7.
9
Substrate specificity of the Norwalk virus 3C-like proteinase.
Virus Res. 2002 Oct;89(1):29-39. doi: 10.1016/s0168-1702(02)00114-4.

引用本文的文献

本文引用的文献

1
Norovirus disease in the United States.
Emerg Infect Dis. 2013 Aug;19(8):1198-205. doi: 10.3201/eid1908.130465.
2
Acute gastroenteritis surveillance through the National Outbreak Reporting System, United States.
Emerg Infect Dis. 2013 Aug;19(8):1305-9. doi: 10.3201/eid1908.130482.
3
Enzyme kinetics of the human norovirus protease control virus polyprotein processing order.
Virology. 2013 Sep;444(1-2):218-24. doi: 10.1016/j.virol.2013.06.013. Epub 2013 Jul 11.
4
RNA binding by human Norovirus 3C-like proteases inhibits protease activity.
Virology. 2013 Mar 30;438(1):20-7. doi: 10.1016/j.virol.2013.01.006. Epub 2013 Feb 9.
5
Structural basis of substrate specificity and protease inhibition in Norwalk virus.
J Virol. 2013 Apr;87(8):4281-92. doi: 10.1128/JVI.02869-12. Epub 2013 Jan 30.
6
Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses.
J Virol. 2012 Nov;86(21):11754-62. doi: 10.1128/JVI.01348-12. Epub 2012 Aug 22.
7
Structure of a murine norovirus NS6 protease-product complex revealed by adventitious crystallisation.
PLoS One. 2012;7(6):e38723. doi: 10.1371/journal.pone.0038723. Epub 2012 Jun 7.
8
9
Characterization and inhibition of norovirus proteases of genogroups I and II using a fluorescence resonance energy transfer assay.
Virology. 2012 Feb 20;423(2):125-33. doi: 10.1016/j.virol.2011.12.002. Epub 2011 Dec 24.
10
Increasing rate of cleavage at boundary between non-structural proteins 4B and 5A inhibits replication of hepatitis C virus.
J Biol Chem. 2012 Jan 2;287(1):568-580. doi: 10.1074/jbc.M111.311407. Epub 2011 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验