文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

经生物功能化硫醇-PEG 分子和普朗尼克嵌段共聚物包覆的金纳米棒制剂的体外毒性和生物成像研究。

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers.

机构信息

Bio-Optical Imaging Group, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (ASTAR), 11 Biopolis Way, 138667 Singapore ; School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore.

Bio-Optical Imaging Group, Singapore Bioimaging Consortium (SBIC), Agency for Science Technology and Research (ASTAR), 11 Biopolis Way, 138667 Singapore.

出版信息

Beilstein J Nanotechnol. 2014 Apr 30;5:546-53. doi: 10.3762/bjnano.5.64. eCollection 2014.


DOI:10.3762/bjnano.5.64
PMID:24991490
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4077316/
Abstract

In this work, we investigated the cytotoxicity, colloidal stability and optical property of gold nanorods before and after functionalizing them with thiolated PEG and Pluronic triblock copolymer (PEO-PPO-PEO) molecules. The morphology of functionalized gold nanorods was characterized by UV-visible absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. Solution phase synthesis of gold nanorods has remained the method of choice for obtaining varying shapes and aspect ratios of rod nanoparticles. This method typically involves the use of cetyltrimethylammonium bromide (CTAB) surfactants as directing agents to grow gold nanorods in the solution phase. The as-synthesized gold nanorods surfaces are terminated with CTAB molecules and this formulation gives rise to adverse toxicity in vitro and in vivo. To employ the gold nanorods for biological studies, it is important to eliminate or minimize the exposure of CTAB molecules from the gold nanorods surface to the local environment such as cells or tissues. Complete removal of CTAB molecules from the gold nanorods surface is unfeasible as this will render the gold nanorods structurally unstable, causing the aggregation of particles. Here, we investigate the individual use of thiolated PEG and PEO-PPO-PEO as capping agents to reduce the cytotoxicity of gold nanorods formulation, while maintaining the optical, colloidal, and structural properties of gold nanorods. We found that encapsulating gold nanorods with the thiolated PEG or PEO-PPO-PEO molecules guarantees the stability and biocompatibility of the nanoformulation. However, excessive use of these molecules during the passivation process leads to a reduction in the overall cell viability. We also demonstrate the use of the functionalized gold nanorods as scattering probes for dark-field imaging of cancer cells thereby demonstrating their biocompatibility. Our results offer a unique solution for the future development of safe scattering color probes for clinical applications such as the long term imaging of cells and tissues.

摘要

在这项工作中,我们研究了巯基化聚乙二醇(PEG)和 Pluronic 三嵌段共聚物(PEO-PPO-PEO)分子功能化前后金纳米棒的细胞毒性、胶体稳定性和光学性质。通过紫外-可见吸收光谱、透射电子显微镜和动态光散射对功能化金纳米棒的形态进行了表征。金纳米棒的溶液法合成仍然是获得不同形状和纵横比的棒状纳米粒子的首选方法。这种方法通常涉及使用十六烷基三甲基溴化铵(CTAB)表面活性剂作为导向剂,在溶液相中生长金纳米棒。合成的金纳米棒表面被 CTAB 分子终止,这种配方会导致体外和体内的不良毒性。为了将金纳米棒用于生物学研究,重要的是要从金纳米棒表面消除或最小化 CTAB 分子的暴露,以避免其与细胞或组织等局部环境相互作用。完全从金纳米棒表面去除 CTAB 分子是不可行的,因为这会使金纳米棒结构不稳定,导致颗粒聚集。在这里,我们研究了单独使用巯基化聚乙二醇(PEG)和 PEO-PPO-PEO 作为封端剂来降低金纳米棒制剂的细胞毒性,同时保持金纳米棒的光学、胶体和结构性质。我们发现,用巯基化聚乙二醇或 PEO-PPO-PEO 分子包裹金纳米棒可以保证纳米制剂的稳定性和生物相容性。然而,在钝化过程中过度使用这些分子会导致细胞活力的整体降低。我们还展示了功能化金纳米棒作为暗场成像癌细胞散射探针的用途,从而证明了它们的生物相容性。我们的研究结果为未来开发用于临床应用的安全散射颜色探针提供了一种独特的解决方案,例如细胞和组织的长期成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/4883a9a9d8f7/Beilstein_J_Nanotechnol-05-546-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/ffaec7eccc35/Beilstein_J_Nanotechnol-05-546-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/c9690044a8e9/Beilstein_J_Nanotechnol-05-546-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/a52f316ac9ea/Beilstein_J_Nanotechnol-05-546-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/50688d337b77/Beilstein_J_Nanotechnol-05-546-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/90d4c78e4078/Beilstein_J_Nanotechnol-05-546-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/b04d3d89d78d/Beilstein_J_Nanotechnol-05-546-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/4883a9a9d8f7/Beilstein_J_Nanotechnol-05-546-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/ffaec7eccc35/Beilstein_J_Nanotechnol-05-546-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/c9690044a8e9/Beilstein_J_Nanotechnol-05-546-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/a52f316ac9ea/Beilstein_J_Nanotechnol-05-546-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/50688d337b77/Beilstein_J_Nanotechnol-05-546-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/90d4c78e4078/Beilstein_J_Nanotechnol-05-546-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/b04d3d89d78d/Beilstein_J_Nanotechnol-05-546-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a116/4077316/4883a9a9d8f7/Beilstein_J_Nanotechnol-05-546-g008.jpg

相似文献

[1]
In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers.

Beilstein J Nanotechnol. 2014-4-30

[2]
Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation.

Langmuir. 2010-6-15

[3]
Block copolymer-mediated synthesis of gold nanoparticles in aqueous solutions: segment effect on gold ion reduction, stabilization, and particle morphology.

J Colloid Interface Sci. 2012-12-17

[4]
Hard Pd Nanorods in the Soft Surfactant Mixture of CTAB and Pluronics: Seedless Synthesis and Their Self-Assembly.

Langmuir. 2018-3-27

[5]
Removal of cetyltrimethylammonium bromide to enhance the biocompatibility of Au nanorods synthesized by a modified seed mediated growth process.

J Nanosci Nanotechnol. 2008-9

[6]
Synthesis of single-crystal PbS nanorods via a simple hydrothermal process using PEO-PPO-PEO triblock copolymer as a structure-directing agent.

Nanotechnology. 2011-2-14

[7]
Lipiodol-loaded poly(oxyethylene)--poly(oxypropylene)--poly(oxyethylene) triblock copolymers/polyethylene glycol-nanoparticles

2004

[8]
Phospholipid stabilized gold nanorods: towards improved colloidal stability and biocompatibility.

Phys Chem Chem Phys. 2017-7-19

[9]
Polymer-Peptide Modified Gold Nanorods to Improve Cell Conjugation and Cell labelling for Stem Cells Photoacoustic Imaging.

Diagnostics (Basel). 2021-6-30

[10]
Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions.

J Phys Chem B. 2005-4-28

引用本文的文献

[1]
Significance of Capping Agents of Colloidal Nanoparticles from the Perspective of Drug and Gene Delivery, Bioimaging, and Biosensing: An Insight.

Int J Mol Sci. 2022-9-10

[2]
Ultrabright fluorescent silica nanoparticles for in vivo targeting of xenografted human tumors and cancer cells in zebrafish.

Nanoscale. 2019-11-28

[3]
Visualization of murine lymph vessels using photoacoustic imaging with contrast agents.

Photoacoustics. 2018-1-31

[4]
Au-nanomaterials as a superior choice for near-infrared photothermal therapy.

Molecules. 2014-12-9

本文引用的文献

[1]
Challenge in Understanding Size and Shape Dependent Toxicity of Gold Nanomaterials in Human Skin Keratinocytes.

Chem Phys Lett. 2008-9-20

[2]
Engineering bioconjugated gold nanospheres and gold nanorods as label-free plasmon scattering probes for ultrasensitive multiplex dark-field imaging of cancer cells.

J Biomed Nanotechnol. 2013-6

[3]
Remote triggered release of doxorubicin in tumors by synergistic application of thermosensitive liposomes and gold nanorods.

ACS Nano. 2011-6-2

[4]
Applications of gold nanorods for cancer imaging and photothermal therapy.

Methods Mol Biol. 2010

[5]
Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects.

Small. 2009-3

[6]
Selective release of multiple DNA oligonucleotides from gold nanorods.

ACS Nano. 2009-1-27

[7]
Gold nanoparticles in biology: beyond toxicity to cellular imaging.

Acc Chem Res. 2008-12

[8]
Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice.

Cancer Lett. 2008-9-28

[9]
The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods.

Langmuir. 2008-2-5

[10]
Paclitaxel-functionalized gold nanoparticles.

J Am Chem Soc. 2007-9-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索