Tellinghuisen Joel, Spiess Andrej-Nikolai
Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
Department of Andrology, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.
Anal Biochem. 2014 Nov 1;464:94-102. doi: 10.1016/j.ab.2014.06.015. Epub 2014 Jun 30.
Most methods for analyzing real-time quantitative polymerase chain reaction (qPCR) data for single experiments estimate the hypothetical cycle 0 signal y0 by first estimating the quantification cycle (Cq) and amplification efficiency (E) from least-squares fits of fluorescence intensity data for cycles near the onset of the growth phase. The resulting y0 values are statistically equivalent to the corresponding Cq if and only if E is taken to be error free. But uncertainty in E usually dominates the total uncertainty in y0, making the latter much degraded in precision compared with Cq. Bias in E can be an even greater source of error in y0. So-called mechanistic models achieve higher precision in estimating y0 by tacitly assuming E=2 in the baseline region and so are subject to this bias error. When used in calibration, the mechanistic y0 is statistically comparable to Cq from the other methods. When a signal threshold yq is used to define Cq, best estimation precision is obtained by setting yq near the maximum signal in the range of fitted cycles, in conflict with common practice in the y0 estimation algorithms.
大多数用于分析单个实验的实时定量聚合酶链反应(qPCR)数据的方法,是通过从生长阶段开始附近循环的荧光强度数据的最小二乘拟合中首先估计定量循环(Cq)和扩增效率(E),来估计假设的循环0信号y0。当且仅当E被视为无误差时,所得的y0值在统计上才等同于相应的Cq。但E的不确定性通常在y0的总不确定性中占主导地位,使得y0的精度与Cq相比大幅下降。E中的偏差在y0中可能是更大的误差来源。所谓的机理模型通过在基线区域默认假设E = 2来在估计y0时实现更高的精度,因此会受到这种偏差误差的影响。在校准中使用时,机理y0在统计上与其他方法的Cq相当。当使用信号阈值yq来定义Cq时,通过将yq设置在拟合循环范围内的最大信号附近可获得最佳估计精度,这与y0估计算法中的常见做法相冲突。