Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany; Division of Mathematical Modeling of Biological Systems, Department of Mathematics, University of Technology Munich, Munich, Germany.
Max Planck Institute for Molecular Genetics, Berlin, Germany.
PLoS Comput Biol. 2014 Jul 3;10(7):e1003686. doi: 10.1371/journal.pcbi.1003686. eCollection 2014 Jul.
Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE) models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity.
功能细胞间的可变性在多细胞生物以及细菌群体中普遍存在。即使是同一细胞类型的遗传上相同的细胞也可能对相同的刺激做出不同的反应。已经开发了一些方法来分析异质群体,例如混合物模型和随机种群模型。然而,现有的方法要么无法同时分析不同的实验条件,要么计算量大且难以应用。此外,它们没有考虑到文献中可用的生物学信息。为了克服现有方法的缺点,我们将混合物模型和常微分方程(ODE)模型结合起来。ODE 模型为基础过程提供了一种机制描述,而混合物模型则提供了一种捕获可变性的简便方法。在一项模拟研究中,我们表明,ODE 约束混合物模型类可以揭示亚群结构并确定细胞间可变性的来源。此外,该方法还为动力学速率和亚群特征提供了可靠的估计。我们使用 ODE 约束混合物建模来研究 NGF 诱导的原代感觉神经元中 Erk1/2 磷酸化,这一过程在炎症性和神经性疼痛中具有重要意义。我们为此过程提出了一个机制途径模型,并重建了跨实验条件的静态和动态亚群特征。我们通过实验验证了模型预测,这验证了 ODE 约束混合物模型的能力。这些结果表明,ODE 约束混合物模型可以揭示新的机制见解,并具有较高的灵敏度。