Department of Systems Biology, Columbia University, New York, NY, USA; Department of Physics, University of Florida, Gainesville, FL, USA.
Department of Systems Biology, Columbia University, New York, NY, USA.
Cell Syst. 2020 Feb 26;10(2):204-212.e8. doi: 10.1016/j.cels.2019.11.010. Epub 2019 Dec 18.
Predictive models of signaling networks are essential for understanding cell population heterogeneity and designing rational interventions in disease. However, using computational models to predict heterogeneity of signaling dynamics is often challenging because of the extensive variability of biochemical parameters across cell populations. Here, we describe a maximum entropy-based framework for inference of heterogeneity in dynamics of signaling networks (MERIDIAN). MERIDIAN estimates the joint probability distribution over signaling network parameters that is consistent with experimentally measured cell-to-cell variability of biochemical species. We apply the developed approach to investigate the response heterogeneity in the EGFR/Akt signaling network. Our analysis demonstrates that a significant fraction of cells exhibits high phosphorylated Akt (pAkt) levels hours after EGF stimulation. Our findings also suggest that cells with high EGFR levels predominantly contribute to the subpopulation of cells with high pAkt activity. We also discuss how MERIDIAN can be extended to accommodate various experimental measurements.
信号网络的预测模型对于理解细胞群体异质性和在疾病中设计合理的干预措施至关重要。然而,由于生化参数在细胞群体中的广泛可变性,使用计算模型来预测信号动力学的异质性通常具有挑战性。在这里,我们描述了一种基于最大熵的推断信号网络动力学异质性的框架(MERIDIAN)。MERIDIAN 估计与生化物种的细胞间变异性相一致的信号网络参数的联合概率分布。我们应用所开发的方法来研究 EGFR/Akt 信号网络的响应异质性。我们的分析表明,在 EGF 刺激数小时后,相当一部分细胞表现出高磷酸化 Akt(pAkt)水平。我们的研究结果还表明,EGFR 水平高的细胞主要有助于具有高 pAkt 活性的细胞亚群。我们还讨论了如何扩展 MERIDIAN 以适应各种实验测量。