Department of Intelligent Systems Engineering and Biocomplexity Institute, Indiana University, Bloomington, IN, USA.
BMC Biol. 2021 Sep 8;19(1):196. doi: 10.1186/s12915-021-01115-z.
The biophysics of an organism span multiple scales from subcellular to organismal and include processes characterized by spatial properties, such as the diffusion of molecules, cell migration, and flow of intravenous fluids. Mathematical biology seeks to explain biophysical processes in mathematical terms at, and across, all relevant spatial and temporal scales, through the generation of representative models. While non-spatial, ordinary differential equation (ODE) models are often used and readily calibrated to experimental data, they do not explicitly represent the spatial and stochastic features of a biological system, limiting their insights and applications. However, spatial models describing biological systems with spatial information are mathematically complex and computationally expensive, which limits the ability to calibrate and deploy them and highlights the need for simpler methods able to model the spatial features of biological systems.
In this work, we develop a formal method for deriving cell-based, spatial, multicellular models from ODE models of population dynamics in biological systems, and vice versa. We provide examples of generating spatiotemporal, multicellular models from ODE models of viral infection and immune response. In these models, the determinants of agreement of spatial and non-spatial models are the degree of spatial heterogeneity in viral production and rates of extracellular viral diffusion and decay. We show how ODE model parameters can implicitly represent spatial parameters, and cell-based spatial models can generate uncertain predictions through sensitivity to stochastic cellular events, which is not a feature of ODE models. Using our method, we can test ODE models in a multicellular, spatial context and translate information to and from non-spatial and spatial models, which help to employ spatiotemporal multicellular models using calibrated ODE model parameters. We additionally investigate objects and processes implicitly represented by ODE model terms and parameters and improve the reproducibility of spatial, stochastic models.
We developed and demonstrate a method for generating spatiotemporal, multicellular models from non-spatial population dynamics models of multicellular systems. We envision employing our method to generate new ODE model terms from spatiotemporal and multicellular models, recast popular ODE models on a cellular basis, and generate better models for critical applications where spatial and stochastic features affect outcomes.
生物体的生物物理学跨越多个尺度,从亚细胞到生物体,并包括具有空间特性的过程,例如分子扩散、细胞迁移和静脉内液体流动。生物数学旨在通过生成代表性模型,用数学术语解释所有相关时空尺度上的生物物理过程。虽然非空间的常微分方程 (ODE) 模型通常用于并易于根据实验数据进行校准,但它们并未明确表示生物系统的空间和随机特征,从而限制了它们的洞察力和应用。然而,描述具有空间信息的生物系统的空间模型在数学上很复杂且计算成本很高,这限制了对它们进行校准和部署的能力,并突出了需要更简单的方法来模拟生物系统的空间特征。
在这项工作中,我们开发了一种从生物系统的种群动态 ODE 模型推导出基于细胞的空间多细胞模型的正式方法,反之亦然。我们提供了从病毒感染和免疫反应的 ODE 模型生成时空多细胞模型的示例。在这些模型中,空间和非空间模型一致性的决定因素是病毒产生的空间异质性程度以及细胞外病毒扩散和衰减的速率。我们展示了 ODE 模型参数如何隐含地表示空间参数,以及基于细胞的空间模型如何通过对细胞随机事件的敏感性产生不确定的预测,这不是 ODE 模型的特征。使用我们的方法,我们可以在多细胞空间环境中测试 ODE 模型,并将信息转换为非空间和空间模型,从而帮助使用经过校准的 ODE 模型参数使用时空多细胞模型。我们还研究了 ODE 模型术语和参数隐含表示的对象和过程,并提高了空间随机模型的可重复性。
我们开发并演示了一种从多细胞系统的非空间种群动态模型生成时空多细胞模型的方法。我们设想利用我们的方法从时空和多细胞模型生成新的 ODE 模型术语,以细胞为基础改写流行的 ODE 模型,并为空间和随机特征影响结果的关键应用生成更好的模型。