Calderón-Santiago Mónica, Priego-Capote Feliciano, Luque de Castro María D
Department of Analytical Chemistry, University of Córdoba , Annex Marie Curie Building, Campus of Rabanales, E-14071 Córdoba, Spain.
Anal Chem. 2014 Aug 5;86(15):7558-65. doi: 10.1021/ac501353n. Epub 2014 Jul 18.
Liquid chromatography coupled to tandem mass spectrometry is one of the most widely used analytical platforms for profiling analysis in metabolomics. One weakness of untargeted metabolomic analysis, however, is the difficulty of identifying metabolites. In fact, the process typically involves mass-based searching of LC-MS and LC-MS/MS data and requires using MS/MS data for unequivocal identification. Current strategies use LC-MS analysis in the scan mode prior to acquiring MS/MS information about targeted metabolites or the "auto MS/MS" mode to fragment automatically the most intense precursor ions. Therefore, in both cases additional injections are required to obtain MS/MS data after data treatment to identify significant compounds whose signals are not so intense. Because an additional procedure is needed to enhance the fraction of metabolites with MS/MS data, in this work, the effectiveness of utilizing different MS/MS parameters across an analytical batch or repetitions of the same sample by using exclusion or inclusion criteria to select precursor ions is assessed. The procedure, known as "gas-phase fractionation (GPF)", was used here for untargeted analysis of serum. The joint use of four methods with a different mass range for selection of precursor ions each provided useful MS/MS information for at least 80% of all molecular entities detected in the MS scan replicates. By contrast, the conventional "auto MS/MS" mode of data acquisition provided MS/MS data for only 48-57% of entities and was therefore less effective toward identifying metabolites. The additional use of GPF improved the detection and annotation of metabolite families such as phospholipids, amino acids, bile acids, carnitines, and fatty acids and their derivatives.
液相色谱-串联质谱联用是代谢组学中用于谱图分析的最广泛使用的分析平台之一。然而,非靶向代谢组学分析的一个弱点是代谢物鉴定困难。实际上,该过程通常涉及基于质量对液相色谱-质谱和液相色谱-串联质谱数据进行搜索,并且需要使用串联质谱数据进行明确鉴定。当前的策略是在获取目标代谢物的串联质谱信息之前,以扫描模式进行液相色谱-质谱分析,或者使用“自动串联质谱”模式自动裂解最强的前体离子。因此,在这两种情况下,在数据处理后都需要额外进样以获得串联质谱数据,以鉴定信号强度不高的重要化合物。由于需要额外的程序来增加具有串联质谱数据的代谢物比例,因此在本研究中,评估了通过使用排除或包含标准选择前体离子,在一个分析批次或同一样品的重复分析中利用不同串联质谱参数的有效性。这里使用的称为“气相分级分离(GPF)”的程序用于血清的非靶向分析。联合使用四种具有不同质量范围的方法来选择前体离子,每种方法都为在质谱扫描重复分析中检测到的所有分子实体的至少80%提供了有用的串联质谱信息。相比之下,传统的“自动串联质谱”数据采集模式仅为48%-57%的实体提供了串联质谱数据,因此在鉴定代谢物方面效果较差。额外使用气相分级分离改善了磷脂、氨基酸、胆汁酸、肉碱、脂肪酸及其衍生物等代谢物家族的检测和注释。