Suppr超能文献

用于通过快速光谱采集速率改进蛋白质组鉴定和定量的平行切口气相富集法。

Parallel Notched Gas-Phase Enrichment for Improved Proteome Identification and Quantification with Fast Spectral Acquisition Rates.

作者信息

Erickson Brian K, Schweppe Devin K, Yu Qing, Rad Ramin, Haas Wilhem, McAlister Graeme C, Gygi Steven P

机构信息

Department of Cell Biology, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States.

出版信息

J Proteome Res. 2020 Jul 2;19(7):2750-2757. doi: 10.1021/acs.jproteome.9b00715. Epub 2020 Feb 17.

Abstract

Gas-phase fractionation enables better quantitative accuracy, improves signal-to-noise ratios, and increases sensitivity in proteomic analyses. However, traditional gas-phase enrichment, which relies upon a large continuous bin, results in suboptimal enrichment, as most chromatographic separations are not 100% orthogonal relative to the first MS dimension (MS/). As such, ions with similar / values tend to elute at the same retention time, which prevents the partitioning of narrow precursor / distributions into a few large continuous gas-phase enrichment bins. To overcome this issue, we developed and tested the use of notched isolation waveforms, which simultaneously isolate multiple discrete / windows in parallel (e.g., 650-700 / and 800-850 /). By comparison to a canonical gas-phase fractionation method, notched waveforms do not require bin optimization via digestion or wasteful sample injections to isolate multiple precursor windows. Importantly, the collection of all / bins simultaneously using the isolation waveform does not suffer from the sensitivity and duty cycle pitfalls inherent to sequential collection of multiple / bins. Applying a notched injection waveform provided consistent enrichment of precursor ions, which resulted in improved proteome depth with greater coverage of low-abundance proteins. Finally, using a reductive dimethyl labeling approach, we show that notched isolation waveforms increase the number of quantified peptides with improved accuracy and precision across a wider dynamic range.

摘要

气相分级分离能够实现更好的定量准确性,提高信噪比,并增强蛋白质组分析中的灵敏度。然而,传统的气相富集依赖于一个大的连续分箱,会导致富集效果欠佳,因为大多数色谱分离相对于第一次质谱维度(MS/)并非100%正交。因此,具有相似/值的离子往往在相同的保留时间洗脱,这阻碍了将狭窄的前体/分布分配到几个大的连续气相富集分箱中。为克服这一问题,我们开发并测试了带凹口的隔离波形的使用,其能同时并行隔离多个离散的/窗口(例如,650 - 700 /和800 - 850 /)。与传统的气相分级分离方法相比,带凹口的波形无需通过酶解或浪费性的样品进样来优化分箱以隔离多个前体窗口。重要的是,使用隔离波形同时收集所有/分箱不会受到顺序收集多个/分箱所固有的灵敏度和占空比问题的影响。应用带凹口的进样波形可实现前体离子的一致富集,从而提高蛋白质组深度,并增加低丰度蛋白质的覆盖范围。最后,使用还原性二甲基标记方法,我们表明带凹口的隔离波形增加了定量肽的数量,在更宽的动态范围内具有更高的准确性和精密度。

相似文献

引用本文的文献

1
Misincorporation Proteomics Technologies: A Review.错掺入蛋白质组学技术:综述
Proteomes. 2021 Jan 21;9(1):2. doi: 10.3390/proteomes9010002.

本文引用的文献

4
Proteome sequencing goes deep.蛋白质组测序深入进行。
Curr Opin Chem Biol. 2015 Feb;24:11-7. doi: 10.1016/j.cbpa.2014.10.017. Epub 2014 Nov 8.
10
Performance evaluation of a high-field Orbitrap mass analyzer.高场轨道阱质谱分析仪的性能评估
J Am Soc Mass Spectrom. 2009 Aug;20(8):1391-6. doi: 10.1016/j.jasms.2009.01.005. Epub 2009 Jan 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验