Suppr超能文献

利用CER中心确保多机构戒烟研究中的数据质量。

Using the CER Hub to ensure data quality in a multi-institution smoking cessation study.

作者信息

Walker Kari L, Kirillova Olga, Gillespie Suzanne E, Hsiao David, Pishchalenko Valentyna, Pai Akshatha Kalsanka, Puro Jon E, Plumley Robert, Kudyakov Rustam, Hu Weiming, Allisany Art, McBurnie MaryAnn, Kurtz Stephen E, Hazlehurst Brian L

机构信息

Kaiser Permanente Northwest, Center for Health Research, Portland, Oregon, USA.

Kaiser Permanente Hawaii, Center for Health Research, Honolulu, Hawaii, USA.

出版信息

J Am Med Inform Assoc. 2014 Nov-Dec;21(6):1129-35. doi: 10.1136/amiajnl-2013-002629. Epub 2014 Jul 3.

Abstract

Comparative effectiveness research (CER) studies involving multiple institutions with diverse electronic health records (EHRs) depend on high quality data. To ensure uniformity of data derived from different EHR systems and implementations, the CER Hub informatics platform developed a quality assurance (QA) process using tools and data formats available through the CER Hub. The QA process, implemented here in a study of smoking cessation services in primary care, used the 'emrAdapter' tool programmed with a set of quality checks to query large samples of primary care encounter records extracted in accord with the CER Hub common data framework. The tool, deployed to each study site, generated error reports indicating data problems to be fixed locally and aggregate data sharable with the central site for quality review. Across the CER Hub network of six health systems, data completeness and correctness issues were prevalent in the first iteration and were considerably improved after three iterations of the QA process. A common issue encountered was incomplete mapping of local EHR data values to those defined by the common data framework. A highly automated and distributed QA process helped to ensure the correctness and completeness of patient care data extracted from EHRs for a multi-institution CER study in smoking cessation.

摘要

涉及多个拥有不同电子健康记录(EHR)机构的比较效果研究(CER)依赖于高质量数据。为确保源自不同EHR系统及实施的数据的一致性,CER中心信息学平台利用CER中心提供的工具和数据格式开发了一个质量保证(QA)流程。在此处针对初级保健戒烟服务的一项研究中实施的QA流程,使用了通过一组质量检查编程的“电子病历适配器”工具,来查询根据CER中心通用数据框架提取的大量初级保健诊疗记录样本。部署到每个研究地点的该工具生成错误报告,指出需要在本地修复的数据问题以及可与中心站点共享以供质量审查的汇总数据。在CER中心的六个卫生系统网络中,数据完整性和正确性问题在首次迭代中普遍存在,经过三次QA流程迭代后有了显著改善。一个常见问题是本地EHR数据值与通用数据框架定义的值之间的映射不完整。一个高度自动化且分布式的QA流程有助于确保从EHR中提取的患者护理数据对于戒烟方面的多机构CER研究的正确性和完整性。

相似文献

1
Using the CER Hub to ensure data quality in a multi-institution smoking cessation study.利用CER中心确保多机构戒烟研究中的数据质量。
J Am Med Inform Assoc. 2014 Nov-Dec;21(6):1129-35. doi: 10.1136/amiajnl-2013-002629. Epub 2014 Jul 3.

引用本文的文献

本文引用的文献

3
Use of electronic medical records differs by specialty and office settings.电子病历的使用因专业和办公环境而异。
J Am Med Inform Assoc. 2013 Jun;20(e1):e33-8. doi: 10.1136/amiajnl-2012-001609. Epub 2013 Mar 28.
4
Next-generation phenotyping of electronic health records.电子健康记录的下一代表型分析。
J Am Med Inform Assoc. 2013 Jan 1;20(1):117-21. doi: 10.1136/amiajnl-2012-001145. Epub 2012 Sep 6.
9
Comparative effectiveness research and medical informatics.比较疗效研究与医学信息学。
Am J Med. 2010 Dec;123(12 Suppl 1):e32-7. doi: 10.1016/j.amjmed.2010.10.006.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验