Walker Kari L, Kirillova Olga, Gillespie Suzanne E, Hsiao David, Pishchalenko Valentyna, Pai Akshatha Kalsanka, Puro Jon E, Plumley Robert, Kudyakov Rustam, Hu Weiming, Allisany Art, McBurnie MaryAnn, Kurtz Stephen E, Hazlehurst Brian L
Kaiser Permanente Northwest, Center for Health Research, Portland, Oregon, USA.
Kaiser Permanente Hawaii, Center for Health Research, Honolulu, Hawaii, USA.
J Am Med Inform Assoc. 2014 Nov-Dec;21(6):1129-35. doi: 10.1136/amiajnl-2013-002629. Epub 2014 Jul 3.
Comparative effectiveness research (CER) studies involving multiple institutions with diverse electronic health records (EHRs) depend on high quality data. To ensure uniformity of data derived from different EHR systems and implementations, the CER Hub informatics platform developed a quality assurance (QA) process using tools and data formats available through the CER Hub. The QA process, implemented here in a study of smoking cessation services in primary care, used the 'emrAdapter' tool programmed with a set of quality checks to query large samples of primary care encounter records extracted in accord with the CER Hub common data framework. The tool, deployed to each study site, generated error reports indicating data problems to be fixed locally and aggregate data sharable with the central site for quality review. Across the CER Hub network of six health systems, data completeness and correctness issues were prevalent in the first iteration and were considerably improved after three iterations of the QA process. A common issue encountered was incomplete mapping of local EHR data values to those defined by the common data framework. A highly automated and distributed QA process helped to ensure the correctness and completeness of patient care data extracted from EHRs for a multi-institution CER study in smoking cessation.
涉及多个拥有不同电子健康记录(EHR)机构的比较效果研究(CER)依赖于高质量数据。为确保源自不同EHR系统及实施的数据的一致性,CER中心信息学平台利用CER中心提供的工具和数据格式开发了一个质量保证(QA)流程。在此处针对初级保健戒烟服务的一项研究中实施的QA流程,使用了通过一组质量检查编程的“电子病历适配器”工具,来查询根据CER中心通用数据框架提取的大量初级保健诊疗记录样本。部署到每个研究地点的该工具生成错误报告,指出需要在本地修复的数据问题以及可与中心站点共享以供质量审查的汇总数据。在CER中心的六个卫生系统网络中,数据完整性和正确性问题在首次迭代中普遍存在,经过三次QA流程迭代后有了显著改善。一个常见问题是本地EHR数据值与通用数据框架定义的值之间的映射不完整。一个高度自动化且分布式的QA流程有助于确保从EHR中提取的患者护理数据对于戒烟方面的多机构CER研究的正确性和完整性。