文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines.

作者信息

Zhang Yumiao, Jeon Mansik, Rich Laurie J, Hong Hao, Geng Jumin, Zhang Yin, Shi Sixiang, Barnhart Todd E, Alexandridis Paschalis, Huizinga Jan D, Seshadri Mukund, Cai Weibo, Kim Chulhong, Lovell Jonathan F

机构信息

1] Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA [2] Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA.

1] Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, USA [2] Department of Creative IT Engineering, POSTECH, Pohang, Korea.

出版信息

Nat Nanotechnol. 2014 Aug;9(8):631-8. doi: 10.1038/nnano.2014.130. Epub 2014 Jul 6.


DOI:10.1038/nnano.2014.130
PMID:24997526
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4130353/
Abstract

There is a need for safer and improved methods for non-invasive imaging of the gastrointestinal tract. Modalities based on X-ray radiation, magnetic resonance and ultrasound suffer from limitations with respect to safety, accessibility or lack of adequate contrast. Functional intestinal imaging of dynamic gut processes has not been practical using existing approaches. Here, we report the development of a family of nanoparticles that can withstand the harsh conditions of the stomach and intestine, avoid systemic absorption, and provide good optical contrast for photoacoustic imaging. The hydrophobicity of naphthalocyanine dyes was exploited to generate purified ∼ 20 nm frozen micelles, which we call nanonaps, with tunable and large near-infrared absorption values (>1,000). Unlike conventional chromophores, nanonaps exhibit non-shifting spectra at ultrahigh optical densities and, following oral administration in mice, passed safely through the gastrointestinal tract. Non-invasive, non-ionizing photoacoustic techniques were used to visualize nanonap intestinal distribution with low background and remarkable resolution, and enabled real-time intestinal functional imaging with ultrasound co-registration. Positron emission tomography following seamless nanonap radiolabelling allowed complementary whole-body imaging.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/7028f2910c4c/nihms601452f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/a3ce8bad66d6/nihms601452f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/63c7e78d76c1/nihms601452f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/c0cb94f4902d/nihms601452f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/09ce07a13a4f/nihms601452f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/4de5d9cdf130/nihms601452f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/7028f2910c4c/nihms601452f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/a3ce8bad66d6/nihms601452f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/63c7e78d76c1/nihms601452f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/c0cb94f4902d/nihms601452f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/09ce07a13a4f/nihms601452f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/4de5d9cdf130/nihms601452f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ea5/4130353/7028f2910c4c/nihms601452f6.jpg

相似文献

[1]
Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines.

Nat Nanotechnol. 2014-8

[2]
Bioimaging: sensed at the gut level.

Nat Nanotechnol. 2014-8

[3]
Imaging: Dynamic imaging of gut function--allowing the blind to see.

Nat Rev Gastroenterol Hepatol. 2014-10

[4]
Multimodal near-infrared-emitting PluS Silica nanoparticles with fluorescent, photoacoustic, and photothermal capabilities.

Int J Nanomedicine. 2016-9-22

[5]
Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines.

Biomaterials. 2015-9-16

[6]
Surfactant-Stripped Frozen Pheophytin Micelles for Multimodal Gut Imaging.

Adv Mater. 2016-7-11

[7]
Surfactant-stripped naphthalocyanines for multimodal tumor theranostics with upconversion guidance cream.

Nanoscale. 2017-3-9

[8]
Optimizing Axial and Peripheral Substitutions in Si-Centered Naphthalocyanine Dyes for Enhancing Aqueous Solubility and Photoacoustic Signal Intensity.

Int J Mol Sci. 2023-1-23

[9]
Multimodal optoacoustic imaging: methods and contrast materials.

Chem Soc Rev. 2024-6-17

[10]
Silica-coated bismuth sulfide nanorods as multimodal contrast agents for a non-invasive visualization of the gastrointestinal tract.

Nanoscale. 2015-7-6

引用本文的文献

[1]
Multifunctional Upconversion Nanoparticles Transforming Photoacoustic Imaging: A Review.

Nanomaterials (Basel). 2025-7-10

[2]
Photoacoustic-Integrated Multimodal Approach for Colorectal Cancer Diagnosis.

ACS Biomater Sci Eng. 2025-7-14

[3]
Multifunctional Poly(Acrylic Acid)-Coated EuBiGdO Nanocomposite as an Effective Contrast Agent in Spectral Photon Counting CT, MRI, and Fluorescence Imaging.

Int J Nanomedicine. 2025-4-14

[4]
Activatable near-infrared fluorescence and chemical exchange saturation transfer MRI multimodal imaging probe for tumor detection in vitro and in vivo.

Sens Actuators B Chem. 2024-8-15

[5]
Guided Multispectral Optoacoustic Tomography for 3D Imaging of the Murine Colon.

Adv Sci (Weinh). 2025-3

[6]
Finely Tailored Conjugated Small Molecular Nanoparticles for Near-Infrared Biomedical Applications.

Research (Wash D C). 2025-1-10

[7]
Temporal dynamics of fluorescence and photoacoustic signals of a Cetuximab-IRDye800 conjugate in EGFR-overexpressing tumors.

bioRxiv. 2024-12-2

[8]
Exploring innovative strides in radiolabeled nanoparticle progress for multimodality cancer imaging and theranostic applications.

Cancer Imaging. 2024-9-20

[9]
Potential applications for photoacoustic imaging using functional nanoparticles: A comprehensive overview.

Heliyon. 2024-7-17

[10]
Multimodal optoacoustic imaging: methods and contrast materials.

Chem Soc Rev. 2024-6-17

本文引用的文献

[1]
Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice.

Nat Nanotechnol. 2014-1-26

[2]
Gastrointestinal motility disorders in inflammatory bowel diseases.

World J Gastroenterol. 2014-1-7

[3]
Photoacoustic signal amplification through plasmonic nanoparticle aggregation.

J Biomed Opt. 2013-1

[4]
Intrinsically copper-64-labeled organic nanoparticles as radiotracers.

Angew Chem Int Ed Engl. 2012-11-14

[5]
Endoscopic and radiographic evaluation of the small bowel in 2012.

Am J Med. 2012-10-9

[6]
Performance characterization of an integrated ultrasound, photoacoustic, and thermoacoustic imaging system.

J Biomed Opt. 2012-5

[7]
Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice.

ACS Nano. 2012-5-31

[8]
Biomedical applications of photoacoustic imaging with exogenous contrast agents.

Ann Biomed Eng. 2011-11-3

[9]
Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics.

Contrast Media Mol Imaging. 2011

[10]
Non-invasive, dynamic imaging of murine intestinal motility.

Neurogastroenterol Motil. 2011-5-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索