文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多功能聚丙烯酸包覆的EuBiGdO纳米复合材料作为光谱光子计数CT、MRI和荧光成像中的有效造影剂。

Multifunctional Poly(Acrylic Acid)-Coated EuBiGdO Nanocomposite as an Effective Contrast Agent in Spectral Photon Counting CT, MRI, and Fluorescence Imaging.

作者信息

Ibrahim Yusuf O, Maalej Nabil, Raja Aamir Younis, Qurashi Ahsanulhaq, Rahmani Mohamed, Venkatachalam Thenmozhi, Abdullah Osama, Paterson Haidee J, Das Gobind, Bradley Curtis C, Nasser Rasha A, Pitsalidis Charalampos

机构信息

Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates.

Functional Biomaterials Group, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates.

出版信息

Int J Nanomedicine. 2025 Apr 14;20:4759-4775. doi: 10.2147/IJN.S506187. eCollection 2025.


DOI:10.2147/IJN.S506187
PMID:40255670
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12007612/
Abstract

INTRODUCTION: Recently, diagnostic methods based on multimodal and non-invasive imaging, such as MRI and CT scanners, have been developed for accurate cancer diagnosis. A key limitation of these imaging systems is their low contrast. Therefore, developing stable, non-toxic, and efficient multimodal imaging contrast agents is desirable. In this work, we demonstrated the synthesis of a poly(acrylic acid) (PAA) - coated nanoparticles (NPs), PAA@EuBiGdO-NPs as an imaging agent for contrast enhancement in spectral photon-counting computed tomography (SPCCT), magnetic resonance imaging (MRI) and fluorescence imaging (FL). METHODS: We synthesized PAA-coated EuBiGdO-NPs using a polyol method by dissolving metal nitrates and PAA in triethylene glycol. NaOH solution was added under constant heating at 180°C. The nanoparticles were precipitated with the addition of ethanol, then washed, dried, calcined at 600°C, and redispersed in water for further studies. The nanoparticles were characterized using TEM, SEM, XRD, XPS, FTIR, and PL spectroscopy. PAA@EuBiGdO-NPs were tested in vitro for their cytocompatibility with lung cancer epithelial cells (A549). The nanocomposite image contrast enhancement was evaluated using SPCCT, MRI, and FL imaging. RESULTS: The cell viability study showed that PAA@EuBiGdO-NPs is safe up to 250 µg/mL, exhibiting IC50 values of 365.8 and 337.8 µg/mL after 24 and 48 hours, respectively. The NPs have strong X-ray attenuation with a slope of ~61 HUmL/mg, as determined from the SPCCT concentration-dependent analysis. The MRI of the NPs reveals a high T1 contrast with a relaxivity of 11.77 mMs. Fluorescence imaging of cells incubated with PAA@EuBiGdO₃-NPs shows strong red luminescence. CONCLUSION: The new nanocomposite has proven to be an effective trimodal contrast agent with high attenuation in CT, enhanced T1 signal in MRI, and strong red luminescence in FL imaging with promising diagnostic capabilities.

摘要

引言:最近,基于多模态和非侵入性成像的诊断方法,如磁共振成像(MRI)和计算机断层扫描(CT)扫描仪,已被开发用于精确的癌症诊断。这些成像系统的一个关键限制是其对比度较低。因此,开发稳定、无毒且高效的多模态成像造影剂是很有必要的。在这项工作中,我们展示了一种聚(丙烯酸)(PAA)包覆的纳米颗粒(NPs),即PAA@EuBiGdO-NPs作为一种成像剂,用于在光谱光子计数计算机断层扫描(SPCCT)、磁共振成像(MRI)和荧光成像(FL)中增强对比度。 方法:我们通过将金属硝酸盐和PAA溶解在三甘醇中,采用多元醇法合成了PAA包覆的EuBiGdO-NPs。在180°C持续加热下加入NaOH溶液。加入乙醇使纳米颗粒沉淀,然后洗涤、干燥、在600°C煅烧,并重新分散在水中用于进一步研究。使用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)和光致发光(PL)光谱对纳米颗粒进行表征。体外测试了PAA@EuBiGdO-NPs与肺癌上皮细胞(A549)的细胞相容性。使用SPCCT、MRI和FL成像评估了纳米复合材料的图像对比度增强效果。 结果:细胞活力研究表明,PAA@EuBiGdO-NPs在浓度高达250μg/mL时是安全的,在24小时和48小时后的半数抑制浓度(IC50)值分别为365.8和337.8μg/mL。根据SPCCT浓度依赖性分析确定,这些纳米颗粒具有很强的X射线衰减,斜率约为61HUmL/mg。纳米颗粒的MRI显示出高T1对比度,弛豫率为11.77mMs。用PAA@EuBiGdO₃-NPs孵育的细胞的荧光成像显示出强烈的红色发光。 结论:这种新型纳米复合材料已被证明是一种有效的三模态造影剂,在CT中具有高衰减,在MRI中增强T1信号,在FL成像中具有强烈的红色发光,具有很有前景的诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/957c5e8662ae/IJN-20-4759-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/a0fadc82fff3/IJN-20-4759-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/b4a0e85fea38/IJN-20-4759-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/660462c67301/IJN-20-4759-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/d4a8f839e4e5/IJN-20-4759-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/10d69ded5485/IJN-20-4759-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/67daa2e71c5c/IJN-20-4759-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/1180ae952e23/IJN-20-4759-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/7e8fcc6b692c/IJN-20-4759-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/b45cb3e74341/IJN-20-4759-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/957c5e8662ae/IJN-20-4759-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/a0fadc82fff3/IJN-20-4759-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/b4a0e85fea38/IJN-20-4759-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/660462c67301/IJN-20-4759-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/d4a8f839e4e5/IJN-20-4759-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/10d69ded5485/IJN-20-4759-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/67daa2e71c5c/IJN-20-4759-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/1180ae952e23/IJN-20-4759-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/7e8fcc6b692c/IJN-20-4759-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/b45cb3e74341/IJN-20-4759-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3924/12007612/957c5e8662ae/IJN-20-4759-g0010.jpg

相似文献

[1]
Multifunctional Poly(Acrylic Acid)-Coated EuBiGdO Nanocomposite as an Effective Contrast Agent in Spectral Photon Counting CT, MRI, and Fluorescence Imaging.

Int J Nanomedicine. 2025-4-14

[2]
Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging.

ACS Appl Mater Interfaces. 2015-8-19

[3]
Europium-phenolic network coated BaGdF nanocomposites for tri-modal computed tomography/magnetic resonance/luminescence imaging.

J Mater Sci Mater Med. 2017-5

[4]
The feasibility of NaGdF nanoparticles as an x-ray fluorescence computed tomography imaging probe for the liver and lungs.

Med Phys. 2019-12-10

[5]
Ultrasmall Europium, Gadolinium, and Dysprosium Oxide Nanoparticles: Polyol Synthesis, Properties, and Biomedical Imaging Applications.

Mini Rev Med Chem. 2020

[6]
A theranostic system based on nanocomposites of manganese oxide nanoparticles and a pH sensitive polymer: Preparation, and physicochemical characterization.

Bioelectrochemistry. 2019-8-9

[7]
NaGdF:Yb,Er-Ag nanowire hybrid nanocomposite for multifunctional upconversion emission, optical imaging, MRI and CT imaging applications.

Mikrochim Acta. 2020-5-8

[8]
Gadolinium oxysulfide nanoparticles as multimodal imaging agents for T2-weighted MR, X-ray tomography and photoluminescence.

Nanoscale. 2013-11-18

[9]
Trifunctional Polymeric Nanocomposites Incorporated with Fe₃O₄/Iodine-Containing Rare Earth Complex for Computed X-ray Tomography, Magnetic Resonance, and Optical Imaging.

ACS Appl Mater Interfaces. 2015-11-11

[10]
Facile and Scalable Synthesis of Novel Spherical Au Nanocluster Assemblies@Polyacrylic Acid/Calcium Phosphate Nanoparticles for Dual-Modal Imaging-Guided Cancer Chemotherapy.

Small. 2015-3-5

本文引用的文献

[1]
Gold nanoparticles spectral CT imaging and limit of detectability in a new materials contrast-detail phantom.

Phys Med. 2024-4

[2]
Cancer statistics, 2024.

CA Cancer J Clin. 2024

[3]
Smart nanoparticles for cancer therapy.

Signal Transduct Target Ther. 2023-11-3

[4]
Research progress of cancer cell membrane coated nanoparticles for the diagnosis and therapy of breast cancer.

Front Oncol. 2023-9-14

[5]
Polysaccharide-based gold nanomaterials: Synthesis mechanism, polysaccharide structure-effect, and anticancer activity.

Carbohydr Polym. 2023-12-1

[6]
Review on Metal-Based Theranostic Nanoparticles for Cancer Therapy and Imaging.

Technol Cancer Res Treat. 2023

[7]
Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications.

Nanoscale. 2023-3-30

[8]
Spectral Photon-Counting CT Imaging of Gold Nanoparticle Labelled Monocytes for Detection of Atherosclerosis: A Preclinical Study.

Diagnostics (Basel). 2023-1-29

[9]
Multifunctional nanoparticle for cancer therapy.

MedComm (2020). 2023-1-11

[10]
Nanoparticles in the diagnosis and treatment of cancer metastases: Current and future perspectives.

Cancer Lett. 2023-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索