Departments of †Chemical Engineering & Materials Science, §Applied Science, and ∥Biomedical Engineering, University of California , Davis, California 95616 United States.
J Am Chem Soc. 2014 Jul 23;136(29):10186-9. doi: 10.1021/ja5037308. Epub 2014 Jul 8.
Substrate-mediated fusion of small polymersomes, derived from mixtures of lipids and amphiphilic block copolymers, produces hybrid, supported planar bilayers at hydrophilic surfaces, monolayers at hydrophobic surfaces, and binary monolayer/bilayer patterns at amphiphilic surfaces, directly responding to local measures of (and variations in) surface free energy. Despite the large thickness mismatch in their hydrophobic cores, the hybrid membranes do not exhibit microscopic phase separation, reflecting irreversible adsorption and limited lateral reorganization of the polymer component. With increasing fluid-phase lipid fraction, these hybrid, supported membranes undergo a fluidity transition, producing a fully percolating fluid lipid phase beyond a critical area fraction, which matches the percolation threshold for the immobile point obstacles. This then suggests that polymer-lipid hybrid membranes might be useful models for studying obstructed diffusion, such as occurs in lipid membranes containing proteins.
小分子聚合物囊泡的基质介导融合,这些囊泡由脂质和两亲性嵌段共聚物的混合物衍生而来,在亲水表面产生混合的、受支撑的平面双层膜,在疏水表面产生单层膜,在两亲性表面产生双层膜/单层膜图案,直接响应局部表面自由能的测量(和变化)。尽管它们的疏水核存在很大的厚度不匹配,但混合膜不会表现出微观相分离,这反映了聚合物成分的不可逆吸附和有限的横向重组。随着流体相脂质分数的增加,这些混合的、受支撑的膜经历了流动性转变,在临界面积分数之外产生了完全渗透的流体脂质相,这与不可移动点障碍物的渗透阈值相匹配。这表明聚合物-脂质混合膜可能是研究受阻扩散的有用模型,例如在含有蛋白质的脂质膜中发生的扩散。