Stella Stefano, Molina Rafael, López-Méndez Blanca, Juillerat Alexandre, Bertonati Claudia, Daboussi Fayza, Campos-Olivas Ramon, Duchateau Phillippe, Montoya Guillermo
Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain.
Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain.
Acta Crystallogr D Biol Crystallogr. 2014 Jul;70(Pt 7):2042-52. doi: 10.1107/S1399004714011183. Epub 2014 Jun 29.
DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein-DNA interactions in protein scaffolds is key to providing `toolkits' for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix-loop-helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.
DNA编辑为合成生物学和生物医学带来了新的可能性,可用于调节或修饰细胞功能乃至生物体。然而,这一过程中的不准确可能导致基因组损伤。为解决这一重要问题,通过使用定制蛋白和内源性DNA修复机制添加、去除或交换DNA序列,实现了一种允许特定基因修饰的策略。因此,在蛋白质支架中设计特定的蛋白质-DNA相互作用是为精确基因组修饰或基因表达调控提供“工具包”的关键。在寻找假定的DNA结合结构域时,鉴定出了一种能识别19 bp DNA靶点的蛋白质BurrH。在此,报道了其无配体和与DNA结合的晶体结构,揭示了一个包含19个螺旋-环-螺旋模块化结构域重复序列(BurrH结构域;BuD)的中心区域,该结构域通过单一的残基-核苷酸编码识别DNA靶点,从而便于对其进行重新设计以用于基因靶向。已在该模板中设计了新的DNA结合特异性,表明源自BuD的核酸酶(BuDNs)在人类血红蛋白β(HBB)基因靠近导致镰状细胞贫血的突变位点处诱导高水平的基因靶向。因此,BuD阵列高效性和特异性的独特组合能够推动多种用于细胞或生物体重新设计的基因组修饰方法,为基因编辑开辟新途径。