Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia; Chair of Medical and Molecular Genetics Research, Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
Clinical Laboratory Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia;
Libyan J Med. 2014 Jul 7;9(1):24432. doi: 10.3402/ljm.v9.24432. eCollection 2014.
Co production of 16S rRNA methylases gene and β-Lactamase gene among Enterobacteriaceae isolates conferring resistance to both therapeutic options has serious implications for clinicians worldwide.
To study co existence of 16S rRNA methylases (armA, rmtA, rmtB, rmtC, rmtD, and npmA) and β-Lactamase (blaTEM-1, blaSHV-12, blaCTX-M-14) genes, we screened all phenotypic positive β-Lactamase producing enterobacteriaceae by polymerase chain reaction (PCR) targeting above genes. A total of 330 enterobacteriaceae strains were collected during study period out of that 218 isolates were identified phenotypically as β-Lactamase producers, which include 50 (22.9%) Escherichia coli; 92 (42.2%) Klebsiella pneumoniae, 44 (20.2%), Citrobactor freundii and 32 (14.7%) Enterobacter spp.
Among this 218, only 188 isolates harbored the resistant gene for β-Lactamase production. Major β-Lactamase producing isolates were blaTEM-1 type. 122 (56 %) isolates were found to produce any one of the 16S rRNA methylase genes. A total of 116 isolates co produced b-Lactamase and at least one 16S rRNA methylases gene Co production of armA gene was found in 26 isolates with rmtB and in 4 isolates with rmtC. The rmtA and rmtD genes were not detected in any of the tested isolates. Six isolates were positive for a 16S rRNA methylase gene alone.
β-Lactamase producing isolates appears to coexist with 16S rRNA methylase predominantly armA and rmtB genes in the same isolate. We conclude the major β-Lactamase and 16S rRNA methylases co-producer was K. pneumoniae followed by E. coli. We suggest further work on evaluating other β-lactamases types and novel antibiotic resistance mechanisms among Enterobacteriaceae.
肠杆菌科分离株中 16S rRNA 甲基化酶基因和β-内酰胺酶基因的共同产生使这两种治疗选择都具有耐药性,这对全球临床医生具有重要意义。
为了研究 16S rRNA 甲基化酶(armA、rmtA、rmtB、rmtC、rmtD 和 npmA)和β-内酰胺酶(blaTEM-1、blaSHV-12、blaCTX-M-14)基因的共同存在,我们通过针对上述基因的聚合酶链反应(PCR)筛选所有表型阳性的β-内酰胺酶产生肠杆菌科。在研究期间共收集了 330 株肠杆菌科菌株,其中 218 株表型鉴定为β-内酰胺酶产生菌,包括 50(22.9%)株大肠埃希菌;92(42.2%)株肺炎克雷伯菌,44(20.2%)株柠檬酸杆菌和 32(14.7%)肠杆菌属。
在这 218 株中,只有 188 株携带β-内酰胺酶产生的耐药基因。主要的β-内酰胺酶产生菌是 blaTEM-1 型。122(56%)株产生 16S rRNA 甲基化酶基因中的任何一种。共产生 b-内酰胺酶和至少一种 16S rRNA 甲基化酶基因的 116 株。在 26 株与 rmtB 共产生 armA 基因的菌株和 4 株与 rmtC 共产生 rmtC 基因的菌株中发现了 rmtA 和 rmtD 基因。在检测的任何菌株中均未检测到 rmtA 和 rmtD 基因。有 6 株单独产 16S rRNA 甲基化酶基因。
β-内酰胺酶产生菌似乎与同一菌株中的 16S rRNA 甲基化酶基因主要是 armA 和 rmtB 基因共存。我们得出结论,主要的β-内酰胺酶和 16S rRNA 甲基化酶共同产生菌是肺炎克雷伯菌,其次是大肠埃希菌。我们建议进一步评估肠杆菌科中其他β-内酰胺酶类型和新型抗生素耐药机制。