Suppr超能文献

乳腺癌三级细胞学分级系统的比较

Comparison of 3-tier cytological grading systems for breast carcinoma.

作者信息

Einstien Dinisha, Omprakash B O Parijatham, Ganapathy Hemalatha, Rahman Sadaf

机构信息

Department of Pathology, Sree Balaji Medical College and Hospital, No. 7, CLC Works Road, Chrompet, Chennai 44, India.

出版信息

ISRN Oncol. 2014 Mar 12;2014:252103. doi: 10.1155/2014/252103. eCollection 2014.

Abstract

Background. Fine-needle aspiration cytology plays a major role in the primary diagnosis of breast carcinoma. Cytological grading of the smears can provide valuable prognostic information and aid in planning the management options. Aim. To evaluate various 3-tier cytological grading systems and to determine the best possible system which is reliable and objective for use in routine practice. Materials & Methods. 72 fine-needle aspiration smears of breast carcinomas were graded by two pathologists and compared with the histologic grading by Nottingham modification of Scarff-Bloom-Richardson method. Concordance and correlation studies were done. Kappa measurement of interobserver agreement was also done. Results. Robinson's method showed a better correlation (77.7%) and substantial Kappa value of agreement (κ = 0.61) with Bloom Richardson's histological grading method in comparison to the other methods, closely followed by Fisher's method. Fisher's method showed better interobserver agreement (84.7%, κ = 0.616) compared to the other systems. Conclusions. Robinson's method of cytological grading in fine-needle aspiration smears of breast carcinoma is simpler, multifactorial, and feasible, hence being preferable for routine use according to our study.

摘要

背景。细针穿刺细胞学检查在乳腺癌的初步诊断中起着重要作用。涂片的细胞学分级可以提供有价值的预后信息,并有助于制定治疗方案。目的。评估各种三级细胞学分级系统,并确定在常规实践中使用的最可靠、客观的最佳系统。材料与方法。由两位病理学家对72例乳腺癌细针穿刺涂片进行分级,并与采用诺丁汉改良的斯卡夫-布卢姆-理查森方法进行的组织学分级进行比较。进行了一致性和相关性研究。还进行了观察者间一致性的kappa测量。结果。与其他方法相比,罗宾逊方法与布卢姆-理查森组织学分级方法显示出更好的相关性(77.7%)和较高的kappa一致性值(κ = 0.61),其次是费舍尔方法。与其他系统相比,费舍尔方法显示出更好的观察者间一致性(84.7%,κ = 0.616)。结论。根据我们的研究,罗宾逊方法用于乳腺癌细针穿刺涂片的细胞学分级更简单、多因素且可行,因此更适合常规使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/363f/3972913/16df274d094a/ISRN.ONCOLOGY2014-252103.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验