Environmental Microbial and Food Safety Lab, Agricultural Research Service, United States Department of Agriculture , Beltsville, Maryland 20705, United States.
ACS Appl Mater Interfaces. 2014 Aug 13;6(15):12467-78. doi: 10.1021/am502384q. Epub 2014 Aug 4.
We have developed a two-step replica molding method for rapid fabrication of biomimetically patterned plant surfaces (BPS) using polydimethylsiloxane (PDMS-BPS) and agarose (AGAR-BPS). Beyond providing multiple identical specimens that faithfully reproduce leaf surface microstructure, this approach also offers unique chemical, physical, and biological features. PDMS-BPS provide good structural durability for SEM examination, have surface wettability comparable to plant surfaces for coating development, and allow for real-time monitoring of biosynthesis through incorporation into microfluidic devices. AGAR-BPS are compatible with bacterial growth, recovery, and quantification, and enable investigation of the effects of surface topography on spatially varying survival and inactivation of Escherichia coli cells during biocide treatment. Further development and application of these biomimetically patterned surfaces to study (and possibly modify) other aspects of plant-bacteria interactions can provide insight into controlling pathogen contamination in a wide range of applications.
我们开发了一种两步复制成型方法,用于使用聚二甲基硅氧烷(PDMS-BPS)和琼脂糖(AGAR-BPS)快速制造仿生图案化植物表面(BPS)。这种方法不仅可以提供多个忠实再现叶片表面微观结构的相同样本,还提供独特的化学、物理和生物学特性。PDMS-BPS 为 SEM 检查提供了良好的结构耐久性,具有与植物表面相当的表面润湿性,可用于开发涂层,并可通过纳入微流控设备进行实时生物合成监测。AGAR-BPS 与细菌的生长、回收和定量兼容,并能够研究表面形貌对杀菌剂处理过程中大肠杆菌细胞空间变化存活和失活的影响。这些仿生图案化表面的进一步开发和应用,以研究(并可能修改)植物-细菌相互作用的其他方面,可以深入了解在广泛的应用中控制病原体污染的方法。