Scharpf Robert B, Mireles Lynn, Yang Qiong, Köttgen Anna, Ruczinski Ingo, Susztak Katalin, Halper-Stromberg Eitan, Tin Adrienne, Cristiano Stephen, Chakravarti Aravinda, Boerwinkle Eric, Fox Caroline S, Coresh Josef, Linda Kao Wen Hong
550 N, Broadway, Suite 1101, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
BMC Genet. 2014 Jul 9;15:81. doi: 10.1186/1471-2156-15-81.
Hyperuricemia is associated with multiple diseases, including gout, cardiovascular disease, and renal disease. Serum urate is highly heritable, yet association studies of single nucleotide polymorphisms (SNPs) and serum uric acid explain a small fraction of the heritability. Whether copy number polymorphisms (CNPs) contribute to uric acid levels is unknown.
We assessed copy number on a genome-wide scale among 8,411 individuals of European ancestry (EA) who participated in the Atherosclerosis Risk in Communities (ARIC) study. CNPs upstream of the urate transporter SLC2A9 on chromosome 4p16.1 are associated with uric acid (χ2df2=3545, p=3.19×10-23). Effect sizes, expressed as the percentage change in uric acid per deleted copy, are most pronounced among women (3.974.935.87 [ 2.55097.5 denoting percentiles], p=4.57×10-23) and independent of previously reported SNPs in SLC2A9 as assessed by SNP and CNP regression models and the phasing SNP and CNP haplotypes (χ2df2=3190,p=7.23×10-08). Our finding is replicated in the Framingham Heart Study (FHS), where the effect size estimated from 4,089 women is comparable to ARIC in direction and magnitude (1.414.707.88, p=5.46×10-03).
This is the first study to characterize CNPs in ARIC and the first genome-wide analysis of CNPs and uric acid. Our findings suggests a novel, non-coding regulatory mechanism for SLC2A9-mediated modulation of serum uric acid, and detail a bioinformatic approach for assessing the contribution of CNPs to heritable traits in large population-based studies where technical sources of variation are substantial.
高尿酸血症与多种疾病相关,包括痛风、心血管疾病和肾脏疾病。血清尿酸具有高度遗传性,但单核苷酸多态性(SNP)与血清尿酸的关联研究仅解释了一小部分遗传性。拷贝数多态性(CNP)是否影响尿酸水平尚不清楚。
我们在参与社区动脉粥样硬化风险(ARIC)研究的8411名欧洲血统(EA)个体中进行了全基因组规模的拷贝数评估。位于4号染色体p16.1上尿酸转运蛋白SLC2A9上游的CNP与尿酸相关(χ2df2 = 3545,p = 3.19×10-23)。以每个缺失拷贝的尿酸百分比变化表示的效应大小在女性中最为显著(3.97 4.93 5.87 [2.55 097.5表示百分位数],p = 4.57×10-23),并且通过SNP和CNP回归模型以及分阶段SNP和CNP单倍型评估,独立于先前报道的SLC2A9中的SNP(χ2df2 = 3190,p = 7.23×10-08)。我们的发现在美国弗明汉心脏研究(FHS)中得到了重复,在该研究中,从4089名女性中估计的效应大小在方向和大小上与ARIC相当(1.41 4.70 7.88,p = 5.46×10-03)。
这是第一项在ARIC中表征CNP的研究,也是第一项对CNP和尿酸进行全基因组分析的研究。我们的发现揭示了一种新的、非编码的调节机制,用于SLC2A9介导的血清尿酸调节,并详细介绍了一种生物信息学方法,用于评估在技术变异来源众多的大型人群研究中CNP对遗传性状的贡献。