Suppr超能文献

可溶性腺苷酸环化酶对于克服髓鞘相关因子对轴突生长的阻滞是必要且充分的。

Soluble adenylyl cyclase is necessary and sufficient to overcome the block of axonal growth by myelin-associated factors.

机构信息

Department of Biological Sciences, Hunter College, New York, New York 10065, and Department of Pharmacology and.

Department of Pharmacology and Stitch Radiation Oncology Department, Weill Cornell Medical College, New York, New York 10065.

出版信息

J Neurosci. 2014 Jul 9;34(28):9281-9. doi: 10.1523/JNEUROSCI.1434-14.2014.

Abstract

Neurons in the CNS do not regenerate following injury; regeneration is blocked by inhibitory proteins in myelin, such as myelin-associated glycoprotein (MAG). Elevating neuronal levels of the second messenger cAMP overcomes this blocked axonal outgrowth. One way to elevate cAMP is pretreating neurons with neurotrophins, such as brain-derived neurotrophic factor (BDNF). However, pleiotropic effects and poor bioavailability make exogenous administration of neurotrophins in vivo problematic; therefore, alternative targets must be considered. In neurons, two families of adenylyl cyclases synthesize cAMP, transmembrane adenylyl cyclases (tmACs), and soluble adenylyl cyclase (sAC). Here, we demonstrate that sAC is the essential source of cAMP for BDNF to overcome MAG-dependent inhibition of neurite outgrowth. Elevating sAC in rat and mouse neurons is sufficient to induce neurite outgrowth on myelin in vitro and promotes regeneration in vivo. These results suggest that stimulators of sAC might represent a novel therapeutic strategy to promote axonal growth and regeneration.

摘要

中枢神经系统中的神经元在受伤后不会再生;髓鞘中的抑制蛋白,如髓鞘相关糖蛋白 (MAG),阻止了再生。升高神经元中二信使 cAMP 的水平可以克服这种被阻断的轴突生长。一种升高 cAMP 的方法是用神经营养因子预处理神经元,如脑源性神经营养因子 (BDNF)。然而,神经营养因子的多效性和较差的生物利用度使得其在体内的外源性给药成为问题;因此,必须考虑替代靶标。在神经元中,两种腺苷酸环化酶家族合成 cAMP,即跨膜腺苷酸环化酶 (tmAC) 和可溶性腺苷酸环化酶 (sAC)。在这里,我们证明 sAC 是 BDNF 克服 MAG 依赖性抑制轴突生长所必需的 cAMP 来源。在大鼠和小鼠神经元中升高 sAC 足以诱导体外髓鞘上的轴突生长,并促进体内再生。这些结果表明,sAC 的刺激剂可能代表一种促进轴突生长和再生的新的治疗策略。

相似文献

7
Regeneration in the central nervous system.中枢神经系统的再生
Exp Gerontol. 2003 Jan-Feb;38(1-2):79-86. doi: 10.1016/s0531-5565(02)00165-1.
8
Overcoming inhibitors in myelin to promote axonal regeneration.克服髓鞘中的抑制因子以促进轴突再生。
J Neurol Sci. 2005 Jun 15;233(1-2):43-7. doi: 10.1016/j.jns.2005.03.023. Epub 2005 Apr 20.
10
The role of soluble adenylyl cyclase in neurite outgrowth.可溶性腺苷酸环化酶在神经突生长中的作用。
Biochim Biophys Acta. 2014 Dec;1842(12 Pt B):2561-8. doi: 10.1016/j.bbadis.2014.07.012. Epub 2014 Jul 23.

引用本文的文献

7
The Role of Axon Transport in Neuroprotection and Regeneration.轴突运输在神经保护和再生中的作用。
Dev Neurobiol. 2018 Oct;78(10):998-1010. doi: 10.1002/dneu.22630. Epub 2018 Aug 27.

本文引用的文献

2
Pharmacological distinction between soluble and transmembrane adenylyl cyclases.可溶性和跨膜腺苷酸环化酶的药理学区别。
J Pharmacol Exp Ther. 2013 Dec;347(3):589-98. doi: 10.1124/jpet.113.208496. Epub 2013 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验