Suppr超能文献

兴奋性突触反应的随机分散。

Random dispersion in excitatory synapse response.

机构信息

Istituto di Cibernetica "E.Caianiello" del CNR, Via Campi Flegrei 34, 80078  Pozzuoli, NA Italy.

出版信息

Cogn Neurodyn. 2014 Aug;8(4):327-34. doi: 10.1007/s11571-014-9285-1. Epub 2014 Mar 19.

Abstract

The excitatory synaptic function is subject to a huge amount of researches and fairly all the structural elements of the synapse are investigated to determine their specific contribution to the response. A model of an excitatory (hippocampal) synapse, based on time discretized Langevin equations (time-step = 40 fs), was introduced to describe the Brownian motion of Glutamate molecules (GLUTs) within the synaptic cleft and their binding to postsynaptic receptors. The binding has been computed by the introduction of a binding probability related to the hits of GLUTs on receptor binding sites. This model has been utilized in computer simulations aimed to describe the random dispersion of the synaptic response, evaluated from the dispersion of the peak amplitude of the excitatory post-synaptic current. The results of the simulation, presented here, have been used to find a reliable numerical quantity for the unknown value of the binding probability. Moreover, the same results have shown that the coefficient of variation decreases when the number of postsynaptic receptors increases, all the other parameters of the process being unchanged. Due to its possible relationships with the learning and memory, this last finding seems to furnish an important clue for understanding the basic mechanisms of the brain activity.

摘要

兴奋性突触功能受到了大量的研究,相当多的突触结构元素都被研究过,以确定它们对反应的特定贡献。一个基于时间离散化 Langevin 方程(时间步长=40fs)的兴奋性(海马)突触模型被引入,以描述谷氨酸分子(GLUTs)在突触间隙中的布朗运动及其与突触后受体的结合。通过引入与 GLUTs 击中受体结合位点的概率相关的结合概率来计算结合。该模型已用于计算机模拟,旨在描述从兴奋性突触后电流的峰值幅度的离散来评估的突触反应的随机离散。这里呈现的模拟结果被用于找到绑定概率的未知值的可靠数值量。此外,相同的结果表明,当突触后受体的数量增加时,变异系数减小,而过程的所有其他参数保持不变。由于它可能与学习和记忆有关,这一发现似乎为理解大脑活动的基本机制提供了一个重要线索。

相似文献

1
Random dispersion in excitatory synapse response.兴奋性突触反应的随机分散。
Cogn Neurodyn. 2014 Aug;8(4):327-34. doi: 10.1007/s11571-014-9285-1. Epub 2014 Mar 19.

引用本文的文献

2
The thermodynamics of cognition: A mathematical treatment.认知的热力学:一种数学处理方法。
Comput Struct Biotechnol J. 2021 Jan 12;19:784-793. doi: 10.1016/j.csbj.2021.01.008. eCollection 2021.
3
Relationships between short and fast brain timescales.短与快的大脑时间尺度之间的关系。
Cogn Neurodyn. 2017 Dec;11(6):539-552. doi: 10.1007/s11571-017-9450-4. Epub 2017 Aug 23.

本文引用的文献

1
Synaptic consolidation: an approach to long-term learning.突触巩固:一种长期学习的方法。
Cogn Neurodyn. 2012 Jun;6(3):251-7. doi: 10.1007/s11571-011-9177-6. Epub 2011 Oct 22.
5
Regulation of AMPA receptor trafficking and synaptic plasticity.AMPA 受体运输和突触可塑性的调节。
Curr Opin Neurobiol. 2012 Jun;22(3):461-9. doi: 10.1016/j.conb.2011.12.006. Epub 2012 Jan 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验