Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México México D.F., México.
Departamento de Neurofisiología, Instituto Nacional de Psiquiatriìa Ramoìn de la Fuente Munñiz México D.F., México.
Front Cell Neurosci. 2014 Jun 27;8:169. doi: 10.3389/fncel.2014.00169. eCollection 2014.
The soma of many neurons releases large amounts of transmitter molecules through an exocytosis process that continues for hundreds of seconds after the end of the triggering stimulus. Transmitters released in this way modulate the activity of neurons, glia and blood vessels over vast volumes of the nervous system. Here we studied how somatic exocytosis is maintained for such long periods in the absence of electrical stimulation and transmembrane Ca(2+) entry. Somatic exocytosis of serotonin from dense core vesicles could be triggered by a train of 10 action potentials at 20 Hz in Retzius neurons of the leech. However, the same number of action potentials produced at 1 Hz failed to evoke any exocytosis. The 20-Hz train evoked exocytosis through a sequence of intracellular Ca(2+) transients, with each transient having a different origin, timing and intracellular distribution. Upon electrical stimulation, transmembrane Ca(2+) entry through L-type channels activated Ca(2+)-induced Ca(2+) release. A resulting fast Ca(2+) transient evoked an early exocytosis of serotonin from sparse vesicles resting close to the plasma membrane. This Ca(2+) transient also triggered the transport of distant clusters of vesicles toward the plasma membrane. Upon exocytosis, the released serotonin activated autoreceptors coupled to phospholipase C, which in turn produced an intracellular Ca(2+) increase in the submembrane shell. This localized Ca(2+) increase evoked new exocytosis as the vesicles in the clusters arrived gradually at the plasma membrane. In this way, the extracellular serotonin elevated the intracellular Ca(2+) and this Ca(2+) evoked more exocytosis. The resulting positive feedback loop maintained exocytosis for the following hundreds of seconds until the last vesicles in the clusters fused. Since somatic exocytosis displays similar kinetics in neurons releasing different types of transmitters, the data presented here contributes to understand the cellular basis of paracrine neurotransmission.
许多神经元的胞体通过胞吐作用释放大量的递质分子,这种胞吐作用在触发刺激结束后的数百秒内持续进行。以这种方式释放的递质可以调节神经元、神经胶质细胞和血管的活性,其作用范围遍及整个神经系统。在这里,我们研究了在没有电刺激和跨膜 Ca(2+)内流的情况下,胞体胞吐作用是如何维持如此长的时间的。在水蛭的 Retzius 神经元中,密集核心囊泡中的 5-羟色胺的胞体胞吐作用可以通过 20 Hz 的 10 个动作电位串来触发。然而,在 1 Hz 下产生的相同数量的动作电位未能引发任何胞吐作用。20 Hz 的动作电位串通过一系列细胞内 Ca(2+)瞬变来触发胞吐作用,每个瞬变都有不同的起源、时间和细胞内分布。在电刺激下,通过 L 型通道的跨膜 Ca(2+)内流激活 Ca(2+)-诱导的 Ca(2+)释放。由此产生的快速 Ca(2+)瞬变引发了靠近质膜的稀疏囊泡中 5-羟色胺的早期胞吐作用。这种 Ca(2+)瞬变还触发了远离质膜的囊泡簇向质膜的运输。在胞吐作用时,释放的 5-羟色胺激活了与磷脂酶 C 偶联的自身受体,这反过来又在质膜下壳层中产生了细胞内 Ca(2+)的增加。这种局部 Ca(2+)增加引发了新的胞吐作用,因为簇中的囊泡逐渐到达质膜。通过这种方式,细胞外的 5-羟色胺升高了细胞内 Ca(2+),而这种 Ca(2+)又引发了更多的胞吐作用。由此产生的正反馈循环维持了接下来的数百秒的胞吐作用,直到簇中的最后一个囊泡融合。由于释放不同类型递质的神经元的胞体胞吐作用显示出相似的动力学,因此这里呈现的数据有助于理解旁分泌神经传递的细胞基础。