Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany.
ACS Nano. 2014 Aug 26;8(8):8198-207. doi: 10.1021/nn502496a. Epub 2014 Jul 23.
The development of solid materials which are able to upconvert optical radiation into photons of higher energy is attractive for many applications such as photocatalytic cells and photovoltaic devices. However, to fully exploit triplet-triplet annihilation photon energy upconversion (TTA-UC), oxygen protection is imperative because molecular oxygen is an ultimate quencher of the photon upconversion process. So far, reported solid TTA-UC materials have focused mainly on elastomeric matrices with low barrier properties because the TTA-UC efficiency generally drops significantly in glassy and semicrystalline matrices. To overcome this limit, for example, combine effective and sustainable annihilation upconversion with exhaustive oxygen protection of dyes, we prepare a sustainable solid-state-like material based on nanocellulose. Inspired by the structural buildup of leaves in Nature, we compartmentalize the dyes in the liquid core of nanocellulose-based capsules which are then further embedded in a cellulose nanofibers (NFC) matrix. Using pristine cellulose nanofibers, a sustainable and environmentally friendly functional nanomaterial with ultrahigh barrier properties is achieved. Also, an ensemble of sensitizers and emitter compounds are encapsulated, which allow harvesting of the energy of the whole deep-red sunlight region. The films demonstrate excellent lifetime in synthetic air (20.5/79.5, O2/N2)-even after 1 h operation, the intensity of the TTA-UC signal decreased only 7.8% for the film with 8.8 μm thick NFC coating. The lifetime can be further modulated by the thickness of the protective NFC coating. For comparison, the lifetime of TTA-UC in liquids exposed to air is on the level of seconds to minutes due to fast oxygen quenching.
开发能够将光学辐射上转换为更高能量光子的固体材料对于许多应用具有吸引力,例如光催化电池和光伏器件。然而,为了充分利用三重态-三重态湮灭光子能量上转换(TTA-UC),氧气保护是必不可少的,因为分子氧是光子上转换过程的最终猝灭剂。到目前为止,报道的固态 TTA-UC 材料主要集中在弹性体基质上,因为 TTA-UC 效率在玻璃态和半晶态基质中会显著下降。为了克服这一限制,例如,将有效的和可持续的湮灭上转换与染料的彻底氧保护相结合,我们基于纳米纤维素制备了一种可持续的固态类似材料。受自然界中叶结构的启发,我们将染料分隔在纳米纤维素基胶囊的液芯中,然后进一步嵌入纤维素纳米纤维(NFC)基质中。使用原始纤维素纳米纤维,实现了具有超高阻隔性能的可持续和环保的功能性纳米材料。此外,还封装了一组敏化剂和发射体化合物,这些化合物可以收集整个深红色太阳光区域的能量。这些薄膜在合成空气中(20.5/79.5,O2/N2)表现出优异的寿命-即使在 1 小时的操作后,具有 8.8 μm 厚 NFC 涂层的薄膜的 TTA-UC 信号强度仅下降了 7.8%。通过保护 NFC 涂层的厚度可以进一步调节寿命。相比之下,由于氧气快速猝灭,暴露在空气中的 TTA-UC 在液体中的寿命处于秒到分钟的水平。