Suppr超能文献

快速、高通量测量细菌群体中的集体行为。

Fast, high-throughput measurement of collective behaviour in a bacterial population.

作者信息

Colin R, Zhang R, Wilson L G

机构信息

The Rowland Institute at Harvard, 100 Edwin H. Land Boulevard, Cambridge, MA 02142, USA

Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

出版信息

J R Soc Interface. 2014 Sep 6;11(98):20140486. doi: 10.1098/rsif.2014.0486.

Abstract

Swimming bacteria explore their environment by performing a random walk, which is biased in response to, for example, chemical stimuli, resulting in a collective drift of bacterial populations towards 'a better life'. This phenomenon, called chemotaxis, is one of the best known forms of collective behaviour in bacteria, crucial for bacterial survival and virulence. Both single-cell and macroscopic assays have investigated bacterial behaviours. However, theories that relate the two scales have previously been difficult to test directly. We present an image analysis method, inspired by light scattering, which measures the average collective motion of thousands of bacteria simultaneously. Using this method, a time-varying collective drift as small as 50 nm s(-1) can be measured. The method, validated using simulations, was applied to chemotactic Escherichia coli bacteria in linear gradients of the attractant α-methylaspartate. This enabled us to test a coarse-grained minimal model of chemotaxis. Our results clearly map the onset of receptor methylation, and the transition from linear to logarithmic sensing in the bacterial response to an external chemoeffector. Our method is broadly applicable to problems involving the measurement of collective drift with high time resolution, such as cell migration and fluid flows measurements, and enables fast screening of tactic behaviours.

摘要

游动的细菌通过进行随机游走探索其周围环境,这种随机游走会因例如化学刺激而产生偏向,导致细菌群体集体朝着“更好的生存环境”漂移。这种现象被称为趋化作用,是细菌中最著名的集体行为形式之一,对细菌的生存和致病性至关重要。单细胞和宏观实验都对细菌行为进行了研究。然而,之前很难直接验证将这两个尺度联系起来的理论。我们提出了一种受光散射启发的图像分析方法,该方法可以同时测量数千个细菌的平均集体运动。使用这种方法,可以测量低至50 nm s⁻¹的随时间变化的集体漂移。该方法通过模拟验证后,应用于在吸引剂α-甲基天冬氨酸的线性梯度中的趋化性大肠杆菌。这使我们能够测试一个粗粒度的趋化作用最小模型。我们的结果清楚地描绘了受体甲基化的起始,以及细菌对外部化学效应物反应中从线性感应到对数感应的转变。我们的方法广泛适用于涉及高时间分辨率集体漂移测量的问题,如细胞迁移和流体流动测量,并能够快速筛选趋化行为。

相似文献

1
Fast, high-throughput measurement of collective behaviour in a bacterial population.
J R Soc Interface. 2014 Sep 6;11(98):20140486. doi: 10.1098/rsif.2014.0486.
2
Coarse graining Escherichia coli chemotaxis: from multi-flagella propulsion to logarithmic sensing.
Adv Exp Med Biol. 2012;736:381-96. doi: 10.1007/978-1-4419-7210-1_22.
3
Chemotactic behaviour of Escherichia coli at high cell density.
Nat Commun. 2019 Nov 25;10(1):5329. doi: 10.1038/s41467-019-13179-1.
5
Chemotaxis when bacteria remember: drift versus diffusion.
PLoS Comput Biol. 2011 Dec;7(12):e1002283. doi: 10.1371/journal.pcbi.1002283. Epub 2011 Dec 1.
6
Migration and accumulation of bacteria with chemotaxis and chemokinesis.
Eur Phys J E Soft Matter. 2021 Mar 15;44(3):32. doi: 10.1140/epje/s10189-021-00009-w.
7
Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time.
PLoS Comput Biol. 2010 Apr 8;6(4):e1000735. doi: 10.1371/journal.pcbi.1000735.
8
Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling.
J Math Biol. 2015 Jan;70(1-2):1-44. doi: 10.1007/s00285-013-0748-5. Epub 2013 Dec 24.
9
Chemotactic smoothing of collective migration.
Elife. 2022 Mar 8;11:e71226. doi: 10.7554/eLife.71226.
10
Relationship between cellular response and behavioral variability in bacterial chemotaxis.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3304-9. doi: 10.1073/pnas.0705463105. Epub 2008 Feb 25.

引用本文的文献

2
Experimental evolution partially restores functionality of bacterial chemotaxis network with reduced number of components.
PLoS Genet. 2025 Jul 10;21(7):e1011784. doi: 10.1371/journal.pgen.1011784. eCollection 2025 Jul.
3
Motile and Chemotactic Minicells and Minicell-Driven Biohybrids Engineered for Active Cargo Delivery.
ACS Appl Mater Interfaces. 2025 Jun 25;17(25):36387-36399. doi: 10.1021/acsami.5c04638. Epub 2025 Jun 12.
4
Role of a single MCP in evolutionary adaptation of for swimming in planktonic and structured environments.
Appl Environ Microbiol. 2025 Apr 23;91(4):e0022925. doi: 10.1128/aem.00229-25. Epub 2025 Mar 25.
7
Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2309251121. doi: 10.1073/pnas.2309251121. Epub 2024 Jan 9.
8
D-amino acids signal a stress-dependent run-away response in Vibrio cholerae.
Nat Microbiol. 2023 Aug;8(8):1549-1560. doi: 10.1038/s41564-023-01419-6. Epub 2023 Jun 26.
10
Escherichia coli chemotaxis is information limited.
Nat Phys. 2021 Dec;17(12):1426-1431. doi: 10.1038/s41567-021-01380-3. Epub 2021 Nov 25.

本文引用的文献

1
High-speed holographic microscopy of malaria parasites reveals ambidextrous flagellar waveforms.
Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18769-74. doi: 10.1073/pnas.1309934110. Epub 2013 Nov 5.
2
Mechanism for adaptive remodeling of the bacterial flagellar switch.
Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):20018-22. doi: 10.1073/pnas.1212327109. Epub 2012 Nov 19.
3
Differential dynamic microscopy: a high-throughput method for characterizing the motility of microorganisms.
Biophys J. 2012 Oct 17;103(8):1637-47. doi: 10.1016/j.bpj.2012.08.045. Epub 2012 Oct 16.
4
Pathway-based mean-field model for Escherichia coli chemotaxis.
Phys Rev Lett. 2012 Jul 27;109(4):048101. doi: 10.1103/PhysRevLett.109.048101. Epub 2012 Jul 23.
5
Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics?
Rep Prog Phys. 2012 Apr;75(4):042601. doi: 10.1088/0034-4885/75/4/042601. Epub 2012 Mar 9.
6
Adaptation at the output of the chemotaxis signalling pathway.
Nature. 2012 Apr 11;484(7393):233-6. doi: 10.1038/nature10964.
7
Theoretical insights into bacterial chemotaxis.
Wiley Interdiscip Rev Syst Biol Med. 2012 May-Jun;4(3):247-59. doi: 10.1002/wsbm.1168. Epub 2012 Mar 12.
8
Noninvasive inference of the molecular chemotactic response using bacterial trajectories.
Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1802-7. doi: 10.1073/pnas.1116772109. Epub 2012 Jan 17.
9
Responding to chemical gradients: bacterial chemotaxis.
Curr Opin Cell Biol. 2012 Apr;24(2):262-8. doi: 10.1016/j.ceb.2011.11.008. Epub 2011 Dec 9.
10
Directional persistence of chemotactic bacteria in a traveling concentration wave.
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16235-40. doi: 10.1073/pnas.1101996108. Epub 2011 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验