Yang Zhong-Bao, Geng Xiaoyu, He Chunmei, Zhang Feng, Wang Rong, Horst Walter J, Ding Zhaojun
Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan 250100, People's Republic of China.
Institute of Plant Nutrition, Leibniz Universität Hannover, 30419 Hannover, Germany.
Plant Cell. 2014 Jul;26(7):2889-904. doi: 10.1105/tpc.114.127993. Epub 2014 Jul 22.
The transition zone (TZ) of the root apex is the perception site of Al toxicity. Here, we show that exposure of Arabidopsis thaliana roots to Al induces a localized enhancement of auxin signaling in the root-apex TZ that is dependent on TAA1, which encodes a Trp aminotransferase and regulates auxin biosynthesis. TAA1 is specifically upregulated in the root-apex TZ in response to Al treatment, thus mediating local auxin biosynthesis and inhibition of root growth. The TAA1-regulated local auxin biosynthesis in the root-apex TZ in response to Al stress is dependent on ethylene, as revealed by manipulating ethylene homeostasis via the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid, the inhibitor of ethylene biosynthesis aminoethoxyvinylglycine, or mutant analysis. In response to Al stress, ethylene signaling locally upregulates TAA1 expression and thus auxin responses in the TZ and results in auxin-regulated root growth inhibition through a number of auxin response factors (ARFs). In particular, ARF10 and ARF16 are important in the regulation of cell wall modification-related genes. Our study suggests a mechanism underlying how environmental cues affect root growth plasticity through influencing local auxin biosynthesis and signaling.
根尖的过渡区(TZ)是铝毒的感知部位。在此,我们表明,拟南芥根暴露于铝会诱导根尖TZ中生长素信号的局部增强,这依赖于TAA1,TAA1编码一种色氨酸转氨酶并调节生长素生物合成。TAA1在根尖TZ中因铝处理而特异性上调,从而介导局部生长素生物合成并抑制根生长。通过乙烯生物合成前体1-氨基环丙烷-1-羧酸、乙烯生物合成抑制剂氨基乙氧基乙烯基甘氨酸或突变分析来调控乙烯稳态,结果表明,铝胁迫下根尖TZ中TAA1调控的局部生长素生物合成依赖于乙烯。响应铝胁迫时,乙烯信号在局部上调TAA1表达,进而在TZ中引发生长素响应,并通过多种生长素响应因子(ARF)导致生长素调控的根生长抑制。特别是,ARF10和ARF16在调控细胞壁修饰相关基因方面很重要。我们的研究揭示了环境信号如何通过影响局部生长素生物合成和信号传导来影响根生长可塑性的潜在机制。