Suppr超能文献

直接种间电子转移加速了稻田土壤富集物中丁酸盐的互营氧化。

Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments.

作者信息

Li Huijuan, Chang Jiali, Liu Pengfei, Fu Li, Ding Dewen, Lu Yahai

机构信息

College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.

出版信息

Environ Microbiol. 2015 May;17(5):1533-47. doi: 10.1111/1462-2920.12576. Epub 2014 Aug 20.

Abstract

Syntrophic interaction occurs during anaerobic fermentation of organic substances forming methane as the final product. H2 and formate are known to serve as the electron carriers in this process. Recently, it has been shown that direct interspecies electron transfer (DIET) occurs for syntrophic CH4 production from ethanol and acetate. Here, we constructed paddy soil enrichments to determine the involvement of DIET in syntrophic butyrate oxidation and CH4 production. The results showed that CH4 production was significantly accelerated in the presence of nanoFe3 O4 in all continuous transfers. This acceleration increased with the increase of nanoFe3 O4 concentration but was dismissed when Fe3 O4 was coated with silica that insulated the mineral from electrical conduction. NanoFe3 O4 particles were found closely attached to the cell surfaces of different morphology, thus bridging cell connections. Molecular approaches, including DNA-based stable isotope probing, revealed that the bacterial Syntrophomonadaceae and Geobacteraceae, and the archaeal Methanosarcinaceae, Methanocellales and Methanobacteriales, were involved in the syntrophic butyrate oxidation and CH4 production. Among them, the growth of Geobacteraceae strictly relied on the presence of nanoFe3 O4 and its electrical conductivity in particular. Other organisms, except Methanobacteriales, were present in enrichments regardless of nanoFe3 O4 amendment. Collectively, our study demonstrated that the nanoFe3 O4 -facilitated DIET occurred in syntrophic CH4 production from butyrate, and Geobacter species played the key role in this process in the paddy soil enrichments.

摘要

在有机物质厌氧发酵形成甲烷作为最终产物的过程中会发生互营作用。已知H2和甲酸盐在此过程中作为电子载体。最近,研究表明,从乙醇和乙酸盐合成甲烷的过程中会发生种间直接电子转移(DIET)。在此,我们构建了稻田土壤富集培养物,以确定DIET在互营丁酸盐氧化和甲烷生成中的作用。结果表明,在所有连续传代培养中,纳米Fe3O4的存在显著加速了甲烷的生成。这种加速作用随着纳米Fe3O4浓度的增加而增强,但当Fe3O4被二氧化硅包裹从而使矿物绝缘不导电时,这种加速作用就消失了。发现纳米Fe3O4颗粒紧密附着在不同形态的细胞表面,从而架起细胞间的连接。包括基于DNA的稳定同位素探测在内的分子方法表明,细菌中的互营单胞菌科和地杆菌科,以及古菌中的甲烷八叠球菌科、甲烷微菌目和甲烷杆菌目,参与了互营丁酸盐氧化和甲烷生成。其中,地杆菌科的生长严格依赖于纳米Fe3O4的存在,特别是其导电性。除甲烷杆菌目外,其他微生物在富集培养物中均有存在,与是否添加纳米Fe3O4无关。总的来说,我们的研究表明,纳米Fe3O4促进的DIET发生在丁酸盐合成甲烷的过程中,并且地杆菌属物种在稻田土壤富集培养物的这一过程中起关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验