Suppr超能文献

功能性因果中介分析及其在脑连接性中的应用

Functional Causal Mediation Analysis With an Application to Brain Connectivity.

作者信息

Lindquist Martin A

机构信息

Associate Professor, Department of Statistics, Columbia University, New York, NY 10027.

出版信息

J Am Stat Assoc. 2012 Dec 21;107(500):1297-1309. doi: 10.1080/01621459.2012.695640.

Abstract

Mediation analysis is often used in the behavioral sciences to investigate the role of intermediate variables that lie on the causal path between a randomized treatment and an outcome variable. Typically, mediation is assessed using structural equation models (SEMs), with model coefficients interpreted as causal effects. In this article, we present an extension of SEMs to the functional data analysis (FDA) setting that allows the mediating variable to be a continuous function rather than a single scalar measure, thus providing the opportunity to study the functional effects of the mediator on the outcome. We provide sufficient conditions for identifying the average causal effects of the functional mediators using the extended SEM, as well as weaker conditions under which an instrumental variable estimand may be interpreted as an effect. The method is applied to data from a functional magnetic resonance imaging (fMRI) study of thermal pain that sought to determine whether activation in certain brain regions mediated the effect of applied temperature on self-reported pain. Our approach provides valuable information about the timing of the mediating effect that is not readily available when using the standard nonfunctional approach. To the best of our knowledge, this work provides the first application of causal inference to the FDA framework.

摘要

中介分析常用于行为科学中,以研究位于随机治疗与结果变量之间因果路径上的中间变量的作用。通常,使用结构方程模型(SEM)评估中介作用,模型系数被解释为因果效应。在本文中,我们将SEM扩展到功能数据分析(FDA)设置,使中介变量可以是连续函数而非单个标量度量,从而提供了研究中介变量对结果的功能效应的机会。我们给出了使用扩展SEM识别功能中介变量平均因果效应的充分条件,以及较弱的条件,在这些条件下工具变量估计量可被解释为一种效应。该方法应用于一项关于热痛的功能磁共振成像(fMRI)研究的数据,该研究旨在确定某些脑区的激活是否介导了施加温度对自我报告疼痛的影响。我们的方法提供了有关中介效应时间的有价值信息,而使用标准的非功能方法时这些信息并不容易获得。据我们所知,这项工作首次将因果推断应用于FDA框架。

相似文献

1
Functional Causal Mediation Analysis With an Application to Brain Connectivity.
J Am Stat Assoc. 2012 Dec 21;107(500):1297-1309. doi: 10.1080/01621459.2012.695640.
2
A machine learning based approach towards high-dimensional mediation analysis.
Neuroimage. 2023 Mar;268:119843. doi: 10.1016/j.neuroimage.2022.119843. Epub 2022 Dec 28.
3
High-dimensional multivariate mediation with application to neuroimaging data.
Biostatistics. 2018 Apr 1;19(2):121-136. doi: 10.1093/biostatistics/kxx027.
5
Statistical approaches for enhancing causal interpretation of the M to Y relation in mediation analysis.
Pers Soc Psychol Rev. 2015 Feb;19(1):30-43. doi: 10.1177/1088868314542878. Epub 2014 Jul 25.
6
Granger mediation analysis of multiple time series with an application to functional magnetic resonance imaging.
Biometrics. 2019 Sep;75(3):788-798. doi: 10.1111/biom.13056. Epub 2019 Apr 29.
7
Mediation analysis with intermediate confounding: structural equation modeling viewed through the causal inference lens.
Am J Epidemiol. 2015 Jan 1;181(1):64-80. doi: 10.1093/aje/kwu239. Epub 2014 Dec 11.
8
Continuous-time causal mediation analysis.
Stat Med. 2019 Sep 30;38(22):4334-4347. doi: 10.1002/sim.8300. Epub 2019 Jul 8.
9
Identifying causal mechanisms in health care interventions using classification tree analysis.
J Eval Clin Pract. 2018 Apr;24(2):353-361. doi: 10.1111/jep.12848. Epub 2017 Nov 3.

引用本文的文献

1
S-GMAS: Genome-Wide Mediation Analysis With Brain Subcortical Shape Mediators.
Hum Brain Mapp. 2025 Aug 1;46(11):e70297. doi: 10.1002/hbm.70297.
2
Causal functional mediation analysis with an application to functional magnetic resonance imaging data.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf019.
3
CAUSAL MEDIATION ANALYSIS FOR SPARSE AND IRREGULAR LONGITUDINAL DATA.
Ann Appl Stat. 2021 Jun;15(2):747-767. doi: 10.1214/20-aoas1427. Epub 2021 Jul 12.
4
Mediation analysis with graph mediator.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf004.
5
Longitudinal analysis of the ABCD® study.
Dev Cogn Neurosci. 2025 Apr;72:101518. doi: 10.1016/j.dcn.2025.101518. Epub 2025 Feb 8.
7
Mediation Analysis with Multiple Exposures and Multiple Mediators.
Stat Med. 2024 Nov 10;43(25):4887-4898. doi: 10.1002/sim.10215. Epub 2024 Sep 9.
8
Controlling false discovery rate for mediator selection in high-dimensional data.
Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae064.
9
A marginal structural model for normal tissue complication probability.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae019.

本文引用的文献

1
Cloak and DAG: a response to the comments on our comment.
Neuroimage. 2013 Aug 1;76:446-9. doi: 10.1016/j.neuroimage.2011.11.027. Epub 2011 Nov 17.
2
Graphical models, potential outcomes and causal inference: comment on Ramsey, Spirtes and Glymour.
Neuroimage. 2011 Jul 15;57(2):334-6. doi: 10.1016/j.neuroimage.2010.10.020. Epub 2010 Oct 21.
3
Marginal structural models for the estimation of direct and indirect effects.
Epidemiology. 2009 Jan;20(1):18-26. doi: 10.1097/EDE.0b013e31818f69ce.
4
Causal inference in randomized experiments with mediational processes.
Psychol Methods. 2008 Dec;13(4):314-36. doi: 10.1037/a0014207.
5
Prefrontal-subcortical pathways mediating successful emotion regulation.
Neuron. 2008 Sep 25;59(6):1037-50. doi: 10.1016/j.neuron.2008.09.006.
6
Causal mediation analyses with rank preserving models.
Biometrics. 2007 Sep;63(3):926-34. doi: 10.1111/j.1541-0420.2007.00766.x.
7
Mediation analysis via potential outcomes models.
Stat Med. 2008 Apr 15;27(8):1282-304. doi: 10.1002/sim.3016.
8
A statistical analysis of brain morphology using wild bootstrapping.
IEEE Trans Med Imaging. 2007 Jul;26(7):954-66. doi: 10.1109/TMI.2007.897396.
9
Estimation of direct causal effects.
Epidemiology. 2006 May;17(3):276-84. doi: 10.1097/01.ede.0000208475.99429.2d.
10
Meeting of minds: the medial frontal cortex and social cognition.
Nat Rev Neurosci. 2006 Apr;7(4):268-77. doi: 10.1038/nrn1884.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验