Lindquist Martin A
Associate Professor, Department of Statistics, Columbia University, New York, NY 10027.
J Am Stat Assoc. 2012 Dec 21;107(500):1297-1309. doi: 10.1080/01621459.2012.695640.
Mediation analysis is often used in the behavioral sciences to investigate the role of intermediate variables that lie on the causal path between a randomized treatment and an outcome variable. Typically, mediation is assessed using structural equation models (SEMs), with model coefficients interpreted as causal effects. In this article, we present an extension of SEMs to the functional data analysis (FDA) setting that allows the mediating variable to be a continuous function rather than a single scalar measure, thus providing the opportunity to study the functional effects of the mediator on the outcome. We provide sufficient conditions for identifying the average causal effects of the functional mediators using the extended SEM, as well as weaker conditions under which an instrumental variable estimand may be interpreted as an effect. The method is applied to data from a functional magnetic resonance imaging (fMRI) study of thermal pain that sought to determine whether activation in certain brain regions mediated the effect of applied temperature on self-reported pain. Our approach provides valuable information about the timing of the mediating effect that is not readily available when using the standard nonfunctional approach. To the best of our knowledge, this work provides the first application of causal inference to the FDA framework.
中介分析常用于行为科学中,以研究位于随机治疗与结果变量之间因果路径上的中间变量的作用。通常,使用结构方程模型(SEM)评估中介作用,模型系数被解释为因果效应。在本文中,我们将SEM扩展到功能数据分析(FDA)设置,使中介变量可以是连续函数而非单个标量度量,从而提供了研究中介变量对结果的功能效应的机会。我们给出了使用扩展SEM识别功能中介变量平均因果效应的充分条件,以及较弱的条件,在这些条件下工具变量估计量可被解释为一种效应。该方法应用于一项关于热痛的功能磁共振成像(fMRI)研究的数据,该研究旨在确定某些脑区的激活是否介导了施加温度对自我报告疼痛的影响。我们的方法提供了有关中介效应时间的有价值信息,而使用标准的非功能方法时这些信息并不容易获得。据我们所知,这项工作首次将因果推断应用于FDA框架。