The Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.
The Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA.
Neuroimage. 2023 Mar;268:119843. doi: 10.1016/j.neuroimage.2022.119843. Epub 2022 Dec 28.
Mediation analysis is used to investigate the role of intermediate variables (mediators) that lie in the path between an exposure and an outcome variable. While significant research has focused on developing methods for assessing the influence of mediators on the exposure-outcome relationship, current approaches do not easily extend to settings where the mediator is high-dimensional. These situations are becoming increasingly common with the rapid increase of new applications measuring massive numbers of variables, including brain imaging, genomics, and metabolomics. In this work, we introduce a novel machine learning based method for identifying high dimensional mediators. The proposed algorithm iterates between using a machine learning model to map the high-dimensional mediators onto a lower-dimensional space, and using the predicted values as input in a standard three-variable mediation model. Hence, the machine learning model is trained to maximize the likelihood of the mediation model. Importantly, the proposed algorithm is agnostic to the machine learning model that is used, providing significant flexibility in the types of situations where it can be used. We illustrate the proposed methodology using data from two functional Magnetic Resonance Imaging (fMRI) studies. First, using data from a task-based fMRI study of thermal pain, we combine the proposed algorithm with a deep learning model to detect distributed, network-level brain patterns mediating the relationship between stimulus intensity (temperature) and reported pain at the single trial level. Second, using resting-state fMRI data from the Human Connectome Project, we combine the proposed algorithm with a connectome-based predictive modeling approach to determine brain functional connectivity measures that mediate the relationship between fluid intelligence and working memory accuracy. In both cases, our multivariate mediation model links exposure variables (thermal pain or fluid intelligence), high dimensional brain measures (single-trial brain activation maps or resting-state brain connectivity) and behavioral outcomes (pain report or working memory accuracy) into a single unified model. Using the proposed approach, we are able to identify brain-based measures that simultaneously encode the exposure variable and correlate with the behavioral outcome.
中介分析用于研究暴露与结果变量之间路径上的中间变量(中介)的作用。虽然已有大量研究致力于开发评估中介对暴露-结果关系影响的方法,但目前的方法不易扩展到中介具有高维性的情况。随着测量大量变量的新应用(包括脑成像、基因组学和代谢组学)的快速增加,这种情况变得越来越普遍。在这项工作中,我们引入了一种新的基于机器学习的方法来识别高维中介。所提出的算法在使用机器学习模型将高维中介映射到低维空间和使用预测值作为标准三变量中介模型的输入之间迭代。因此,机器学习模型被训练为最大化中介模型的似然度。重要的是,所提出的算法对所使用的机器学习模型是不可知的,为其可以使用的情况提供了很大的灵活性。我们使用来自两个功能磁共振成像 (fMRI) 研究的数据说明了所提出的方法。首先,我们使用热痛任务型 fMRI 研究的数据,将所提出的算法与深度学习模型结合起来,以检测分布式、网络级的大脑模式,在单个试验水平上调节刺激强度(温度)和报告疼痛之间的关系。其次,我们使用人类连接组计划的静息状态 fMRI 数据,将所提出的算法与基于连接组的预测建模方法结合起来,以确定调节流体智力和工作记忆准确性之间关系的大脑功能连接测量值。在这两种情况下,我们的多元中介模型将暴露变量(热痛或流体智力)、高维大脑测量值(单个试验大脑激活图或静息状态大脑连接)和行为结果(疼痛报告或工作记忆准确性)链接到一个单一的统一模型中。使用所提出的方法,我们能够识别出同时编码暴露变量且与行为结果相关的基于大脑的测量值。