Suppr超能文献

具有中间混杂因素的中介分析:从因果推断视角审视结构方程模型

Mediation analysis with intermediate confounding: structural equation modeling viewed through the causal inference lens.

作者信息

De Stavola Bianca L, Daniel Rhian M, Ploubidis George B, Micali Nadia

出版信息

Am J Epidemiol. 2015 Jan 1;181(1):64-80. doi: 10.1093/aje/kwu239. Epub 2014 Dec 11.

Abstract

The study of mediation has a long tradition in the social sciences and a relatively more recent one in epidemiology. The first school is linked to path analysis and structural equation models (SEMs), while the second is related mostly to methods developed within the potential outcomes approach to causal inference. By giving model-free definitions of direct and indirect effects and clear assumptions for their identification, the latter school has formalized notions intuitively developed in the former and has greatly increased the flexibility of the models involved. However, through its predominant focus on nonparametric identification, the causal inference approach to effect decomposition via natural effects is limited to settings that exclude intermediate confounders. Such confounders are naturally dealt with (albeit with the caveats of informality and modeling inflexibility) in the SEM framework. Therefore, it seems pertinent to revisit SEMs with intermediate confounders, armed with the formal definitions and (parametric) identification assumptions from causal inference. Here we investigate: 1) how identification assumptions affect the specification of SEMs, 2) whether the more restrictive SEM assumptions can be relaxed, and 3) whether existing sensitivity analyses can be extended to this setting. Data from the Avon Longitudinal Study of Parents and Children (1990-2005) are used for illustration.

摘要

中介效应的研究在社会科学领域有着悠久的传统,而在流行病学领域则相对较新。第一派与路径分析和结构方程模型(SEMs)相关,而第二派主要与因果推断的潜在结果方法中发展出的方法有关。通过给出直接效应和间接效应的无模型定义以及识别它们的明确假设,后一派将前一派直观发展出的概念形式化,并极大地提高了所涉及模型的灵活性。然而,由于其主要关注非参数识别,通过自然效应进行效应分解的因果推断方法仅限于排除中间混杂因素的情况。在结构方程模型框架中,此类混杂因素能自然地得到处理(尽管存在非形式化和建模灵活性不足的问题)。因此,借助因果推断中的形式化定义和(参数)识别假设,重新审视带有中间混杂因素的结构方程模型似乎是恰当的。在此,我们研究:1)识别假设如何影响结构方程模型的设定,2)更具限制性的结构方程模型假设是否可以放宽,以及3)现有的敏感性分析是否可以扩展到这种情况。以雅芳亲子纵向研究(1990 - 2005年)的数据为例进行说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c14c/4383385/4634dfdf1169/kwu23901.jpg

相似文献

1
Mediation analysis with intermediate confounding: structural equation modeling viewed through the causal inference lens.
Am J Epidemiol. 2015 Jan 1;181(1):64-80. doi: 10.1093/aje/kwu239. Epub 2014 Dec 11.
2
Invited commentary: Agent-based models for causal inference—reweighting data and theory in epidemiology.
Am J Epidemiol. 2015 Jan 15;181(2):103-5. doi: 10.1093/aje/kwu272. Epub 2014 Dec 5.
3
Counterfactual graphical models for longitudinal mediation analysis with unobserved confounding.
Cogn Sci. 2013 Aug;37(6):1011-35. doi: 10.1111/cogs.12058. Epub 2013 Jul 30.
4
An introduction to causal inference.
Int J Biostat. 2010 Feb 26;6(2):Article 7. doi: 10.2202/1557-4679.1203.
5
Causal models and learning from data: integrating causal modeling and statistical estimation.
Epidemiology. 2014 May;25(3):418-26. doi: 10.1097/EDE.0000000000000078.
6
Handling Multivariable Missing Data in Causal Mediation Analysis Estimating Interventional Effects.
Epidemiology. 2025 Jul 1;36(4):487-499. doi: 10.1097/EDE.0000000000001866. Epub 2025 Apr 1.
7
Mediation Analysis: A Practitioner's Guide.
Annu Rev Public Health. 2016;37:17-32. doi: 10.1146/annurev-publhealth-032315-021402. Epub 2015 Nov 30.
8
9
Statistical approaches for enhancing causal interpretation of the M to Y relation in mediation analysis.
Pers Soc Psychol Rev. 2015 Feb;19(1):30-43. doi: 10.1177/1088868314542878. Epub 2014 Jul 25.
10
Bayesian sensitivity analysis for unmeasured confounding in causal mediation analysis.
Stat Methods Med Res. 2019 Feb;28(2):515-531. doi: 10.1177/0962280217729844. Epub 2017 Sep 7.

引用本文的文献

1
The Impact of Race and Ethnicity on Congenital Diaphragmatic Hernia 1-Year Mortality.
Pediatr Pulmonol. 2025 Sep;60(9):e71294. doi: 10.1002/ppul.71294.
3
G-formula with multiple imputation for causal inference with incomplete data.
Stat Methods Med Res. 2025 Jun;34(6):1130-1143. doi: 10.1177/09622802251316971. Epub 2025 Mar 31.
4
Composite variable bias: causal analysis of weight outcomes.
Int J Obes (Lond). 2025 Mar 8. doi: 10.1038/s41366-025-01732-6.
5
Cingulate Gyrus Volume as a Mediator of the Social Gradient in Cognitive Function.
J Cell Neurosci. 2025;1(1). doi: 10.31586/jcn.2025.1139. Epub 2025 Jan 24.
6
Practical challenges in mediation analysis: a guide for applied researchers.
Health Serv Outcomes Res Methodol. 2025;25(1):57-84. doi: 10.1007/s10742-024-00327-4. Epub 2024 Apr 12.
7
Socioeconomic Position and Oral Health in Chinese Older Adults: A Life Course Approach.
JDR Clin Trans Res. 2025 Apr;10(2):169-179. doi: 10.1177/23800844241297533. Epub 2024 Dec 9.
8
10
Counterfactual Mediation Analysis with a Latent Class Exposure.
Multivariate Behav Res. 2024 Jul-Aug;59(4):818-840. doi: 10.1080/00273171.2024.2335394. Epub 2024 May 31.

本文引用的文献

2
Quantifying and Testing Indirect Effects in Simple Mediation Models When the Constituent Paths Are Nonlinear.
Multivariate Behav Res. 2010 Aug 6;45(4):627-60. doi: 10.1080/00273171.2010.498290.
4
Effect decomposition in the presence of an exposure-induced mediator-outcome confounder.
Epidemiology. 2014 Mar;25(2):300-6. doi: 10.1097/EDE.0000000000000034.
5
6
Frequency and patterns of eating disorder symptoms in early adolescence.
J Adolesc Health. 2014 May;54(5):574-81. doi: 10.1016/j.jadohealth.2013.10.200. Epub 2013 Dec 17.
8
Natural direct and indirect effects on the exposed: effect decomposition under weaker assumptions.
Biometrics. 2012 Dec;68(4):1019-27. doi: 10.1111/j.1541-0420.2012.01777.x. Epub 2012 Sep 18.
9
Invited commentary: structural equation models and epidemiologic analysis.
Am J Epidemiol. 2012 Oct 1;176(7):608-12. doi: 10.1093/aje/kws213. Epub 2012 Sep 6.
10
A simple unified approach for estimating natural direct and indirect effects.
Am J Epidemiol. 2012 Aug 1;176(3):190-5. doi: 10.1093/aje/kwr525. Epub 2012 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验