Suppr超能文献

单组分和双组分电纺导管在大鼠坐骨模型中的性能比较。

A comparison of the performance of mono- and bi-component electrospun conduits in a rat sciatic model.

作者信息

Cirillo Valentina, Clements Basak A, Guarino Vincenzo, Bushman Jared, Kohn Joachim, Ambrosio Luigi

机构信息

Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale Kennedy 54, Naples 80125, Italy; Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.leTecchio 80, Naples 80125, Italy.

New Jersey Center for Biomaterials, Rutgers - The State University of NJ, 145 Bevier Road, Piscataway, NJ 08854, USA.

出版信息

Biomaterials. 2014 Oct;35(32):8970-82. doi: 10.1016/j.biomaterials.2014.07.010. Epub 2014 Jul 29.

Abstract

Synthetic nerve conduits represent a promising strategy to enhance functional recovery in peripheral nerve injury repair. However, the efficiency of synthetic nerve conduits is often compromised by the lack of molecular factors to create an enriched microenvironment for nerve regeneration. Here, we investigate the in vivo response of mono (MC) and bi-component (BC) fibrous conduits obtained by processing via electrospinning poly(ε-caprolactone) (PCL) and gelatin solutions. In vitro studies demonstrate that the inclusion of gelatin leads to uniform electrospun fiber size and positively influences the response of Dorsal Root Ganglia (DRGs) neurons as confirmed by the preferential extensions of neurites from DRG bodies. This behavior can be attributed to gelatin as a bioactive cue for the cultured DRG and to the reduced fibers size. However, in vivo studies in rat sciatic nerve defect model show an opposite response: MC conduits stimulate superior nerve regeneration than gelatin containing PCL conduits as confirmed by electrophysiology, muscle weight and histology. The G-ratio, 0.71 ± 0.07 for MC and 0.66 ± 0.05 for autograft, is close to 0.6, the value measured in healthy nerves. In contrast, BC implants elicited a strong host response and infiltrating tissue occluded the conduits preventing the formation of myelinated axons. Therefore, although gelatin promotes in vitro nerve regeneration, we conclude that bi-component electrospun conduits are not satisfactory in vivo due to intrinsic limits to their mechanical performance and degradation kinetics, which are essential to peripheral nerve regeneration in vivo.

摘要

合成神经导管是一种有望促进周围神经损伤修复功能恢复的策略。然而,合成神经导管的效率常常因缺乏分子因子而受到影响,这些分子因子能够为神经再生创造一个富集的微环境。在此,我们研究了通过静电纺丝聚(ε-己内酯)(PCL)和明胶溶液制备的单组分(MC)和双组分(BC)纤维导管在体内的反应。体外研究表明,加入明胶可使静电纺丝纤维尺寸均匀,并对背根神经节(DRG)神经元的反应产生积极影响,DRG细胞体优先延伸出神经突即证实了这一点。这种行为可归因于明胶作为培养DRG的生物活性信号以及纤维尺寸的减小。然而,大鼠坐骨神经缺损模型的体内研究显示出相反的反应:电生理学、肌肉重量和组织学证实,MC导管比含明胶的PCL导管更能刺激神经再生。MC导管的G比值为0.71±0.07,自体移植的G比值为0.66±0.05,接近健康神经中测得的0.6。相比之下,BC植入物引发了强烈的宿主反应,浸润组织阻塞了导管,阻止了有髓轴突的形成。因此,尽管明胶能促进体外神经再生,但我们得出结论,双组分静电纺丝导管在体内并不令人满意,因为其机械性能和降解动力学存在内在限制,而这些对于体内周围神经再生至关重要。

相似文献

1
A comparison of the performance of mono- and bi-component electrospun conduits in a rat sciatic model.
Biomaterials. 2014 Oct;35(32):8970-82. doi: 10.1016/j.biomaterials.2014.07.010. Epub 2014 Jul 29.
2
4
Use new poly (ε-caprolactone/collagen/NBG) nerve conduits along with NGF for promoting peripheral (sciatic) nerve regeneration in a rat.
Artif Cells Nanomed Biotechnol. 2018;46(sup2):34-45. doi: 10.1080/21691401.2018.1451339. Epub 2018 Mar 20.
5
Cell-free artificial implants of electrospun fibres in a three-dimensional gelatin matrix support sciatic nerve regeneration in vivo.
J Tissue Eng Regen Med. 2017 Dec;11(12):3289-3304. doi: 10.1002/term.2237. Epub 2017 Jan 27.
6
Bioactive Nanofiber-Based Conduits in a Peripheral Nerve Gap Management-An Animal Model Study.
Int J Mol Sci. 2021 May 25;22(11):5588. doi: 10.3390/ijms22115588.
9
Nanofibrous nerve conduit-enhanced peripheral nerve regeneration.
J Tissue Eng Regen Med. 2014 May;8(5):377-85. doi: 10.1002/term.1531. Epub 2012 Jun 15.
10

引用本文的文献

2
An Easy-to-Handle Route for Bicomponent Porous Tubes Fabrication as Nerve Guide Conduits.
Polymers (Basel). 2024 Oct 14;16(20):2893. doi: 10.3390/polym16202893.
4
Electrical stimulation via repeated biphasic conducting materials for peripheral nerve regeneration.
J Mater Sci Mater Med. 2023 Nov 15;34(11):61. doi: 10.1007/s10856-023-06763-x.
5
Bridging potential of Taurine-loading PCL conduits transplanted with hEnSCs on resected sciatic nerves.
Regen Ther. 2022 Oct 10;21:424-435. doi: 10.1016/j.reth.2022.09.004. eCollection 2022 Dec.
7
3D-Printed Tubular Scaffolds Decorated with Air-Jet-Spun Fibers for Bone Tissue Applications.
Bioengineering (Basel). 2022 Apr 27;9(5):189. doi: 10.3390/bioengineering9050189.
8
Preparation of Polyvinylidene Fluoride-Gold Nanoparticles Electrospinning Nanofiber Membranes.
Bioengineering (Basel). 2022 Mar 24;9(4):130. doi: 10.3390/bioengineering9040130.
9
Polyaniline nano-needles into electrospun bio active fibres support astrocyte response.
RSC Adv. 2021 Mar 18;11(19):11347-11355. doi: 10.1039/d1ra00596k. eCollection 2021 Mar 16.

本文引用的文献

1
Peripheral nerve morphogenesis induced by scaffold micropatterning.
Biomaterials. 2014 Apr;35(13):4035-4045. doi: 10.1016/j.biomaterials.2014.01.069. Epub 2014 Feb 20.
3
Long term peripheral nerve regeneration using a novel PCL nerve conduit.
Neurosci Lett. 2013 Jun 7;544:125-30. doi: 10.1016/j.neulet.2013.04.001. Epub 2013 Apr 10.
4
Effect of surface pore structure of nerve guide conduit on peripheral nerve regeneration.
Tissue Eng Part C Methods. 2013 Mar;19(3):233-43. doi: 10.1089/ten.TEC.2012.0221. Epub 2012 Sep 13.
6
In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers.
J Biomed Mater Res A. 2012 Nov;100(11):3008-19. doi: 10.1002/jbm.a.34233. Epub 2012 Jun 15.
7
Chemical surface modification of poly-ε-caprolactone improves Schwann cell proliferation for peripheral nerve repair.
J Tissue Eng Regen Med. 2014 Feb;8(2):153-63. doi: 10.1002/term.1509. Epub 2012 Apr 17.
8
Nerve conduits for nerve repair or reconstruction.
J Am Acad Orthop Surg. 2012 Feb;20(2):63-8. doi: 10.5435/JAAOS-20-02-063.
9
A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery.
J R Soc Interface. 2012 Feb 7;9(67):202-21. doi: 10.1098/rsif.2011.0438. Epub 2011 Nov 16.
10
Tuning size scale and crystallinity of PCL electrospun fibres via solvent permittivity to address hMSC response.
Macromol Biosci. 2011 Dec 8;11(12):1694-705. doi: 10.1002/mabi.201100204. Epub 2011 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验