Burnette M, Brito-Robinson T, Li J, Zartman J
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
Mol Biosyst. 2014 Oct;10(10):2713-23. doi: 10.1039/c4mb00155a.
Drosophila cell culture is used as a model system with multiple applications including the identification of new therapeutic targets in screens, the study of conserved signal transduction pathway mechanisms, and as an expression system for recombinant proteins. However, in vitro methods for Drosophila cell and organ cultures are relatively undeveloped. To characterize the minimal requirements for long-term maintenance of Drosophila cell lines, we developed an inverse screening strategy to identify small molecules and synergies stimulating proliferation in a chemically defined medium. In this chemical-genetics approach, a compound-protein interaction database is used to systematically score genetic targets on a screen-wide scale to extract further information about cell growth. In the pilot screen, we focused on two well-characterized cell lines, Clone 8 (Cl.8) and Schneider 2 (S2). Validated factors were investigated for their ability to maintain cell growth over multiple passages in the chemically defined medium (CDM). The polyamine spermidine proved to be the critical component that enables the CDM to support long-term maintenance of Cl.8 cells. Spermidine supplementation upregulates DNA synthesis for Cl.8 and S2 cells and increases MAPK signaling for Cl.8 cells. The CDM also supports the long-term growth of Kc167 cells. Our target scoring approach validated the importance of polyamines, with enrichment for multiple polyamine ontologies found for both cell lines. Future iterations of the screen will enable the identification of compound combinations optimized for specific applications-maintenance and generation of new cell lines or the production and purification of recombinant proteins-thus increasing the versatility of Drosophila cell culture as both a genetic and biochemical model system. Our cumulative target scoring approach improves on traditional chemical-genetics methods and is extensible to biological processes in other species.
果蝇细胞培养被用作一种具有多种应用的模型系统,包括在筛选中鉴定新的治疗靶点、研究保守的信号转导途径机制,以及作为重组蛋白的表达系统。然而,果蝇细胞和器官培养的体外方法相对不发达。为了确定果蝇细胞系长期维持的最低要求,我们开发了一种反向筛选策略,以识别在化学成分确定的培养基中刺激增殖的小分子及其协同作用。在这种化学遗传学方法中,一个化合物 - 蛋白质相互作用数据库被用于在全筛选范围内系统地对遗传靶点进行评分,以提取有关细胞生长的更多信息。在初步筛选中,我们聚焦于两个特征明确的细胞系,克隆8(Cl.8)和施奈德2(S2)。对经过验证的因子在化学成分确定的培养基(CDM)中多次传代维持细胞生长的能力进行了研究。多胺亚精胺被证明是使CDM能够支持Cl.8细胞长期维持的关键成分。添加亚精胺可上调Cl.8和S2细胞的DNA合成,并增强Cl.8细胞的丝裂原活化蛋白激酶(MAPK)信号传导。CDM也支持Kc167细胞的长期生长。我们的靶点评分方法验证了多胺的重要性,在两个细胞系中都发现了多种多胺本体的富集。该筛选的未来迭代将能够识别针对特定应用(维持和生成新细胞系或重组蛋白的生产和纯化)优化的化合物组合,从而增加果蝇细胞培养作为遗传和生化模型系统的多功能性。我们累积的靶点评分方法改进了传统的化学遗传学方法,并且可扩展到其他物种的生物学过程。