Luhur Arthur, Klueg Kristin M, Zelhof Andrew C
Department of Biology, Drosophila Genomics Resource Center, Indiana University Bloomington, Bloomington, Indiana.
Wiley Interdiscip Rev Dev Biol. 2019 May;8(3):e339. doi: 10.1002/wdev.339. Epub 2018 Dec 18.
The use of Drosophila cell cultures has positively impacted both fundamental and biomedical research. The most widely used cell lines: Schneider, Kc, the CNS and imaginal disc lines continue to be the choice for many applications. Drosophila cell lines provide a homogenous source of cells suitable for biochemical experimentations, transcriptomics, functional genomics, and biomedical applications. They are amenable to RNA interference and serve as a platform for high-throughput screens to identify relevant candidate genes or drugs for any biological process. Currently, CRISPR-based functional genomics are also being developed for Drosophila cell lines. Even though many uniquely derived cell lines exist, cell genetic techniques such the transgenic UAS-GAL4-based Ras oncogene expression, CRISPR-Cas9 editing and recombination mediated cassette exchange are likely to drive the establishment of many more lines from specific tissues, cells, or genotypes. However, the pace of creating new lines is hindered by several factors inherent to working with Drosophila cell cultures: single cell cloning, optimal media formulations and culture conditions capable of supporting lines from novel tissue sources or genotypes. Moreover, even though many Drosophila cell lines are morphologically and transcriptionally distinct it may be necessary to implement a standard for Drosophila cell line authentication, ensuring the identity and purity of each cell line. Altogether, recent advances and a standardized authentication effort should improve the utility of Drosophila cell cultures as a relevant model for fundamental and biomedical research. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
果蝇细胞培养的应用对基础研究和生物医学研究均产生了积极影响。使用最广泛的细胞系:施奈德细胞系、Kc细胞系、中枢神经系统细胞系和成虫盘细胞系仍是许多应用的首选。果蝇细胞系提供了适合生化实验、转录组学、功能基因组学和生物医学应用的同质细胞来源。它们适用于RNA干扰,并作为高通量筛选的平台,以识别任何生物过程的相关候选基因或药物。目前,基于CRISPR的功能基因组学也正在果蝇细胞系中开发。尽管存在许多独特衍生的细胞系,但诸如基于转基因UAS-GAL4的Ras癌基因表达、CRISPR-Cas9编辑和重组介导的盒式交换等细胞遗传学技术可能会推动从特定组织、细胞或基因型建立更多的细胞系。然而,创建新细胞系的速度受到果蝇细胞培养工作中固有的几个因素的阻碍:单细胞克隆、能够支持来自新组织来源或基因型的细胞系的最佳培养基配方和培养条件。此外,尽管许多果蝇细胞系在形态和转录上存在差异,但可能有必要实施果蝇细胞系鉴定标准,以确保每个细胞系的身份和纯度。总之,最近的进展和标准化的鉴定工作应提高果蝇细胞培养作为基础研究和生物医学研究相关模型的实用性。本文分类如下:技术>细胞、组织和动物表型分析。