Suppr超能文献

随机试验和观察性研究中的适应性匹配

ADAPTIVE MATCHING IN RANDOMIZED TRIALS AND OBSERVATIONAL STUDIES.

作者信息

van der Laan Mark J, Balzer Laura B, Petersen Maya L

机构信息

Division of Biostatistics, University of California, Berkeley.

出版信息

J Stat Res. 2012 Dec 1;46(2):113-156.

Abstract

In many randomized and observational studies the allocation of treatment among a sample of independent and identically distributed units is a function of the covariates of all sampled units. As a result, the treatment labels among the units are possibly dependent, complicating estimation and posing challenges for statistical inference. For example, cluster randomized trials frequently sample communities from some target population, construct matched pairs of communities from those included in the sample based on some metric of similarity in baseline community characteristics, and then randomly allocate a treatment and a control intervention within each matched pair. In this case, the observed data can neither be represented as the realization of independent random variables, nor, contrary to current practice, as the realization of /2 independent random variables (treating the matched pair as the independent sampling unit). In this paper we study estimation of the average causal effect of a treatment under experimental designs in which treatment allocation potentially depends on the pre-intervention covariates of all units included in the sample. We define efficient targeted minimum loss based estimators for this general design, present a theorem that establishes the desired asymptotic normality of these estimators and allows for asymptotically valid statistical inference, and discuss implementation of these estimators. We further investigate the relative asymptotic efficiency of this design compared with a design in which unit-specific treatment assignment depends only on the units' covariates. Our findings have practical implications for the optimal design and analysis of pair matched cluster randomized trials, as well as for observational studies in which treatment decisions may depend on characteristics of the entire sample.

摘要

在许多随机和观察性研究中,在一组独立同分布的单位样本中进行治疗分配是所有抽样单位协变量的函数。因此,各单位之间的治疗标签可能相互依赖,这使得估计变得复杂,并给统计推断带来挑战。例如,整群随机试验经常从某个目标人群中抽取社区样本,根据基线社区特征的某种相似性指标,从样本中包含的社区构建匹配对,然后在每个匹配对内随机分配一种治疗和一种对照干预。在这种情况下,观察到的数据既不能表示为独立随机变量的实现,也不能像当前做法那样,表示为/2个独立随机变量的实现(将匹配对视为独立抽样单位)。在本文中,我们研究了在实验设计下治疗的平均因果效应的估计,在这种设计中,治疗分配可能取决于样本中所有单位的干预前协变量。我们为这种一般设计定义了基于有效目标最小损失的估计量,给出了一个定理,该定理确立了这些估计量所需的渐近正态性,并允许进行渐近有效的统计推断,并讨论了这些估计量的实现。我们进一步研究了这种设计与单位特定治疗分配仅取决于单位协变量的设计相比的相对渐近效率。我们的发现对配对匹配整群随机试验的最优设计和分析以及治疗决策可能取决于整个样本特征的观察性研究具有实际意义。

相似文献

2
Causal Inference for a Population of Causally Connected Units.
J Causal Inference. 2014 Mar;2(1):13-74. doi: 10.1515/jci-2013-0002.
3
Adaptive pair-matching in randomized trials with unbiased and efficient effect estimation.
Stat Med. 2015 Mar 15;34(6):999-1011. doi: 10.1002/sim.6380. Epub 2014 Nov 25.
4
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
6
A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso.
Int J Biostat. 2017 Oct 12;13(2):/j/ijb.2017.13.issue-2/ijb-2015-0097/ijb-2015-0097.xml. doi: 10.1515/ijb-2015-0097.
7
Targeted estimation and inference for the sample average treatment effect in trials with and without pair-matching.
Stat Med. 2016 Sep 20;35(21):3717-32. doi: 10.1002/sim.6965. Epub 2016 Apr 18.
8
Targeted estimation of nuisance parameters to obtain valid statistical inference.
Int J Biostat. 2014;10(1):29-57. doi: 10.1515/ijb-2012-0038.
9
Adaptive pre-specification in randomized trials with and without pair-matching.
Stat Med. 2016 Nov 10;35(25):4528-4545. doi: 10.1002/sim.7023. Epub 2016 Jul 19.
10
Doubly robust inference for targeted minimum loss-based estimation in randomized trials with missing outcome data.
Stat Med. 2017 Oct 30;36(24):3807-3819. doi: 10.1002/sim.7389. Epub 2017 Jul 25.

引用本文的文献

1
Causal inference in randomized trials with partial clustering.
Clin Trials. 2025 May 2:17407745251333779. doi: 10.1177/17407745251333779.
2
A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso.
Int J Biostat. 2017 Oct 12;13(2):/j/ijb.2017.13.issue-2/ijb-2015-0097/ijb-2015-0097.xml. doi: 10.1515/ijb-2015-0097.
3
Adaptive pre-specification in randomized trials with and without pair-matching.
Stat Med. 2016 Nov 10;35(25):4528-4545. doi: 10.1002/sim.7023. Epub 2016 Jul 19.
4
Targeted estimation and inference for the sample average treatment effect in trials with and without pair-matching.
Stat Med. 2016 Sep 20;35(21):3717-32. doi: 10.1002/sim.6965. Epub 2016 Apr 18.
5
Causal Inference for a Population of Causally Connected Units.
J Causal Inference. 2014 Mar;2(1):13-74. doi: 10.1515/jci-2013-0002.
6
Adaptive pair-matching in randomized trials with unbiased and efficient effect estimation.
Stat Med. 2015 Mar 15;34(6):999-1011. doi: 10.1002/sim.6380. Epub 2014 Nov 25.

本文引用的文献

2
Targeted maximum likelihood based causal inference: Part I.
Int J Biostat. 2010;6(2):Article 2. doi: 10.2202/1557-4679.1211.
3
Targeted maximum likelihood estimation of the parameter of a marginal structural model.
Int J Biostat. 2010;6(2):Article 19. doi: 10.2202/1557-4679.1238. Epub 2010 Apr 15.
5
Why match? Investigating matched case-control study designs with causal effect estimation.
Int J Biostat. 2009 Jan 6;5(1):Article 1. doi: 10.2202/1557-4679.1127.
7
Super learner.
Stat Appl Genet Mol Biol. 2007;6:Article25. doi: 10.2202/1544-6115.1309. Epub 2007 Sep 16.
8
Developments in cluster randomized trials and Statistics in Medicine.
Stat Med. 2007 Jan 15;26(1):2-19. doi: 10.1002/sim.2731.
9
Mounting a community-randomized trial: sample size, matching, selection, and randomization issues in PRISM.
Control Clin Trials. 2004 Jun;25(3):235-50. doi: 10.1016/j.cct.2003.12.002.
10
Analysis of time trends in adaptive designs with application to a neurophysiology experiment.
Stat Med. 2000 Aug 15;19(15):2067-75. doi: 10.1002/1097-0258(20000815)19:15<2067::aid-sim508>3.0.co;2-l.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验