Suppr超能文献

有和没有配对情况下随机试验中的适应性预先设定。

Adaptive pre-specification in randomized trials with and without pair-matching.

作者信息

Balzer Laura B, van der Laan Mark J, Petersen Maya L

机构信息

Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, U.S.A..

Division of Biostatistics, University of California, Berkeley, 94110-7358, CA, U.S.A.

出版信息

Stat Med. 2016 Nov 10;35(25):4528-4545. doi: 10.1002/sim.7023. Epub 2016 Jul 19.

Abstract

In randomized trials, adjustment for measured covariates during the analysis can reduce variance and increase power. To avoid misleading inference, the analysis plan must be pre-specified. However, it is often unclear a priori which baseline covariates (if any) should be adjusted for in the analysis. Consider, for example, the Sustainable East Africa Research in Community Health (SEARCH) trial for HIV prevention and treatment. There are 16 matched pairs of communities and many potential adjustment variables, including region, HIV prevalence, male circumcision coverage, and measures of community-level viral load. In this paper, we propose a rigorous procedure to data-adaptively select the adjustment set, which maximizes the efficiency of the analysis. Specifically, we use cross-validation to select from a pre-specified library the candidate targeted maximum likelihood estimator (TMLE) that minimizes the estimated variance. For further gains in precision, we also propose a collaborative procedure for estimating the known exposure mechanism. Our small sample simulations demonstrate the promise of the methodology to maximize study power, while maintaining nominal confidence interval coverage. We show how our procedure can be tailored to the scientific question (intervention effect for the study sample vs. for the target population) and study design (pair-matched or not). Copyright © 2016 John Wiley & Sons, Ltd.

摘要

在随机试验中,分析过程中对已测量的协变量进行调整可以减少方差并提高检验效能。为避免误导性推断,分析计划必须预先指定。然而,通常事先并不清楚在分析中应针对哪些基线协变量(如果有的话)进行调整。例如,考虑东非社区健康可持续研究(SEARCH)的艾滋病预防和治疗试验。有16对匹配的社区以及许多潜在的调整变量,包括地区、艾滋病毒流行率、男性包皮环切覆盖率以及社区层面病毒载量的测量指标。在本文中,我们提出了一种严格的程序来数据自适应地选择调整集,以最大化分析的效率。具体而言,我们使用交叉验证从预先指定的库中选择使估计方差最小的候选目标最大似然估计器(TMLE)。为了进一步提高精度,我们还提出了一种用于估计已知暴露机制的协作程序。我们的小样本模拟证明了该方法在最大化研究效能的同时保持名义置信区间覆盖率的前景。我们展示了如何根据科学问题(研究样本与目标人群的干预效果)和研究设计(是否配对匹配)对我们的程序进行调整。版权所有© 2016约翰威立父子有限公司。

相似文献

6
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
10
On design considerations and randomization-based inference for community intervention trials.关于社区干预试验的设计考量及基于随机化的推断
Stat Med. 1996 Jun 15;15(11):1069-92. doi: 10.1002/(SICI)1097-0258(19960615)15:11<1069::AID-SIM220>3.0.CO;2-Q.

引用本文的文献

本文引用的文献

8
Optimal Nonbipartite Matching and Its Statistical Applications.最优非二分匹配及其统计应用。
Am Stat. 2011;65(1):21-30. doi: 10.1198/tast.2011.08294. Epub 2012 Jan 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验