为何进行匹配?探讨用于因果效应估计的匹配病例对照研究设计。

Why match? Investigating matched case-control study designs with causal effect estimation.

作者信息

Rose Sherri, Laan Mark J van der

机构信息

University of California, Berkeley, USA.

出版信息

Int J Biostat. 2009 Jan 6;5(1):Article 1. doi: 10.2202/1557-4679.1127.

Abstract

Matched case-control study designs are commonly implemented in the field of public health. While matching is intended to eliminate confounding, the main potential benefit of matching in case-control studies is a gain in efficiency. Methods for analyzing matched case-control studies have focused on utilizing conditional logistic regression models that provide conditional and not causal estimates of the odds ratio. This article investigates the use of case-control weighted targeted maximum likelihood estimation to obtain marginal causal effects in matched case-control study designs. We compare the use of case-control weighted targeted maximum likelihood estimation in matched and unmatched designs in an effort to explore which design yields the most information about the marginal causal effect. The procedures require knowledge of certain prevalence probabilities and were previously described by van der Laan (2008). In many practical situations where a causal effect is the parameter of interest, researchers may be better served using an unmatched design.

摘要

匹配病例对照研究设计在公共卫生领域普遍采用。虽然匹配旨在消除混杂因素,但病例对照研究中匹配的主要潜在益处是效率提高。分析匹配病例对照研究的方法主要集中在使用条件逻辑回归模型,该模型提供比值比的条件估计而非因果估计。本文探讨在匹配病例对照研究设计中使用病例对照加权目标最大似然估计来获得边际因果效应。我们比较了匹配设计和非匹配设计中病例对照加权目标最大似然估计的使用情况,以探索哪种设计能提供关于边际因果效应的最多信息。这些程序需要了解某些患病率概率,并且之前已由范德·拉恩(2008年)描述过。在许多实际情况中,当因果效应是感兴趣的参数时,使用非匹配设计可能对研究人员更有利。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索