Suppr超能文献

硝基苯双加氧酶催化硝基苯和 2-硝基甲苯的酶促双氧代反应的同位素效应。

Isotope effects of enzymatic dioxygenation of nitrobenzene and 2-nitrotoluene by nitrobenzene dioxygenase.

机构信息

Eawag, Swiss Federal Institute of Aquatic Science and Technology , 8600 Dübendorf, Switzerland.

出版信息

Environ Sci Technol. 2014 Sep 16;48(18):10750-9. doi: 10.1021/es5028844. Epub 2014 Aug 26.

Abstract

Oxygenation of aromatic rings is a frequent initial step in the biodegradation of persistent contaminants, and the accompanying isotope fractionation is increasingly used to assess the extent of transformation in the environment. Here, we systematically investigated the dioxygenation of two nitroaromatic compounds (nitrobenzene and 2-nitrotoluene) by nitrobenzene dioxygenase (NBDO) to obtain insights into the factors governing its C, H, and N isotope fractionation. Experiments were carried out at different levels of biological complexity from whole bacterial cells to pure enzyme. C, H, and N isotope enrichment factors and kinetic isotope effects (KIEs) were derived from the compound-specific isotope analysis of nitroarenes, whereas C isotope fractionation was also quantified in the oxygenated reaction products. Dioxygenation of nitrobenzene to catechol and 2-nitrotoluene to 3-methylcatechol showed large C isotope enrichment factors, ϵC, of -4.1 ± 0.2‰ and -2.5 ± 0.2‰, respectively, and was observed consistently in the substrates and dioxygenation products. ϵH- and ϵN-values were smaller, that is -5.7 ± 1.3‰ and -1.0 ± 0.3‰, respectively. C isotope fractionation was also identical in experiments with whole bacterial cells and pure enzymes. The corresponding (13)C-KIEs for the dioxygenation of nitrobenzene and 2-nitrotoluene were 1.025 ± 0.001 and 1.018 ± 0.001 and suggest a moderate substrate specificity. Our study illustrates that dioxygenation of nitroaromatic contaminants exhibits a large C isotope fractionation, which is not masked by substrate transport and uptake processes and larger than dioxygenation of other aromatic hydrocarbons.

摘要

芳香环的氧化是持久性污染物生物降解的常见初始步骤,伴随的同位素分馏越来越多地用于评估环境中转化的程度。在这里,我们系统地研究了两种硝基芳烃(硝基苯和 2-硝基甲苯)被硝基苯双加氧酶(NBDO)氧化的过程,以深入了解控制其 C、H 和 N 同位素分馏的因素。实验在从全细菌细胞到纯酶的不同生物复杂性水平上进行。硝基芳烃的特异性同位素分析得出了 C、H 和 N 同位素富集因子和动力学同位素效应(KIE),而氧化产物中的 C 同位素分馏也得到了量化。硝基苯的双加氧作用生成儿茶酚和 2-硝基甲苯的双加氧作用生成 3-甲基儿茶酚,分别表现出较大的 C 同位素富集因子,分别为-4.1±0.2‰和-2.5±0.2‰,并且在底物和双加氧产物中均观察到了这一现象。H 和 N 同位素值较小,分别为-5.7±1.3‰和-1.0±0.3‰。在全细菌细胞和纯酶实验中,C 同位素分馏也是相同的。硝基苯和 2-硝基甲苯的双加氧反应的相应(13)C-KIE 分别为 1.025±0.001 和 1.018±0.001,表明其具有适度的底物特异性。我们的研究表明,硝基芳烃污染物的双加氧作用表现出较大的 C 同位素分馏,这不受底物运输和吸收过程的影响,并且大于其他芳香烃的双加氧作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验