Suppr超能文献

中国2型糖尿病风险评估模型

A risk assessment model for type 2 diabetes in Chinese.

作者信息

Luo Senlin, Han Longfei, Zeng Ping, Chen Feng, Pan Limin, Wang Shu, Zhang Tiemei

机构信息

Information System and Security & Countermeasures Experimental Center, Beijing Institute of Technology, Beijing, P. R. China.

Beijing Institute of Geriatrics, Beijing Hospital, Ministry of Health, Beijing, P. R. China.

出版信息

PLoS One. 2014 Aug 7;9(8):e104046. doi: 10.1371/journal.pone.0104046. eCollection 2014.

Abstract

AIMS

To develop a risk assessment model for persons at risk from type 2 diabetes in Chinese.

MATERIALS AND METHODS

The model was generated from the cross-sectional data of 16246 persons aged from 20 years old and over. C4.5 algorithm and multivariate logistic regression were used for variable selection. Relative risk value combined with expert decision constructed a comprehensive risk assessment for evaluating the individual risk category. The validity of the model was tested by cross validation and a survey performed six years later with some participants.

RESULTS

Nine variables were selected as risk variables. A mathematical model was established to calculate the average probability of diabetes in each cluster's group divided by sex and age. A series of criteria combined with relative RR value (2.2) and level of risk variables stratified individuals into four risk groups (non, low, medium and high risk). The overall accuracy reached 90.99% evaluated by cross-validation inside the model population. The incidence of diabetes for each risk group increased from 1.5 (non-risk group) to 28.2(high-risk group) per one thousand persons per year with six years follow-up.

DISCUSSION

The model could determine the individual risk for type 2 diabetes by four risk degrees. This model could be used as a technique tool not only to support screening persons at different risk, but also to evaluate the result of the intervention.

摘要

目的

建立一个针对中国2型糖尿病高危人群的风险评估模型。

材料与方法

该模型基于16246名20岁及以上人群的横断面数据生成。采用C4.5算法和多变量逻辑回归进行变量选择。相对风险值结合专家判断构建综合风险评估,以评估个体风险类别。通过交叉验证和六年后对部分参与者进行的调查来检验模型的有效性。

结果

九个变量被选为风险变量。建立了一个数学模型,用于计算按性别和年龄划分的每个聚类组中患糖尿病的平均概率。一系列标准结合相对RR值(2.2)和风险变量水平将个体分为四个风险组(无风险、低风险、中风险和高风险)。在模型人群内部通过交叉验证评估,总体准确率达到90.99%。经过六年随访,每个风险组的糖尿病发病率从每年每千人1.5(无风险组)增加到28.2(高风险组)。

讨论

该模型可通过四个风险程度确定2型糖尿病的个体风险。此模型不仅可作为一种技术工具来支持对不同风险人群的筛查,还可用于评估干预结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a003/4125170/2769856af16c/pone.0104046.g001.jpg

相似文献

1
A risk assessment model for type 2 diabetes in Chinese.
PLoS One. 2014 Aug 7;9(8):e104046. doi: 10.1371/journal.pone.0104046. eCollection 2014.
3
The prevalence and predictors of androgen deficiency in Taiwanese men with type 2 diabetes.
Urology. 2013 Jul;82(1):124-9. doi: 10.1016/j.urology.2013.03.023. Epub 2013 May 12.
4
[Establishing a noninvasive prediction model for type 2 diabetes mellitus based on a rural Chinese population].
Zhonghua Yu Fang Yi Xue Za Zhi. 2016 May;50(5):397-403. doi: 10.3760/cma.j.issn.0253-9624.2016.05.003.
5
A prediction model for type 2 diabetes risk among Chinese people.
Diabetologia. 2009 Mar;52(3):443-50. doi: 10.1007/s00125-008-1232-4. Epub 2008 Dec 5.
6
Nonlaboratory-based risk assessment algorithm for undiagnosed type 2 diabetes developed on a nation-wide diabetes survey.
Diabetes Care. 2013 Dec;36(12):3944-52. doi: 10.2337/dc13-0593. Epub 2013 Oct 21.
8
Younger age of escalation of cardiovascular risk factors in Asian Indian subjects.
BMC Cardiovasc Disord. 2009 Jul 5;9:28. doi: 10.1186/1471-2261-9-28.
9
[Body mass index, waist circumference and waist-to-height ratio associated with the incidence of type 2 diabetes mellitus: a cohort study].
Zhonghua Yu Fang Yi Xue Za Zhi. 2016 Apr;50(4):328-33. doi: 10.3760/cma.j.issn.0253-9624.2016.04.009.

引用本文的文献

1
Development of a predictive risk model for all-cause mortality in patients with diabetes in Hong Kong.
BMJ Open Diabetes Res Care. 2021 Jun;9(1). doi: 10.1136/bmjdrc-2020-001950.
3
Multiple Biomarkers Improved Prediction for the Risk of Type 2 Diabetes Mellitus in Singapore Chinese Men and Women.
Diabetes Metab J. 2020 Apr;44(2):295-306. doi: 10.4093/dmj.2019.0020. Epub 2019 Nov 22.
6
Development and Validation of the Korean Diabetes Risk Score: A 10-Year National Cohort Study.
Diabetes Metab J. 2018 Oct;42(5):402-414. doi: 10.4093/dmj.2018.0014. Epub 2018 Jul 6.
7
Risk score model of type 2 diabetes prediction for rural Chinese adults: the Rural Deqing Cohort Study.
J Endocrinol Invest. 2017 Oct;40(10):1115-1123. doi: 10.1007/s40618-017-0680-4. Epub 2017 May 4.

本文引用的文献

1
Quantitative influence of risk factors on blood glucose level.
Biomed Mater Eng. 2014;24(1):1359-66. doi: 10.3233/BME-130939.
2
Risk scores based on self-reported or available clinical data to detect undiagnosed type 2 diabetes: a systematic review.
Diabetes Res Clin Pract. 2012 Dec;98(3):369-85. doi: 10.1016/j.diabres.2012.09.005. Epub 2012 Sep 23.
4
Survey of diabetes risk assessment tools: concepts, structure and performance.
Diabetes Metab Res Rev. 2012 Sep;28(6):485-98. doi: 10.1002/dmrr.2296.
7
Risk assessment tools for identifying individuals at risk of developing type 2 diabetes.
Epidemiol Rev. 2011;33(1):46-62. doi: 10.1093/epirev/mxq019. Epub 2011 May 27.
9
A simple Chinese risk score for undiagnosed diabetes.
Diabet Med. 2010 Mar;27(3):274-81. doi: 10.1111/j.1464-5491.2010.02943.x.
10
A simple tool detected diabetes and prediabetes in rural Chinese.
J Clin Epidemiol. 2010 Sep;63(9):1030-5. doi: 10.1016/j.jclinepi.2009.11.012. Epub 2010 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验