Suppr超能文献

中国农村成年人 2 型糖尿病风险评分模型:德清农村队列研究。

Risk score model of type 2 diabetes prediction for rural Chinese adults: the Rural Deqing Cohort Study.

机构信息

School of Public Health, Key Laboratory of Public Health Safety and Pudong Institute of Preventive Medicine, Fudan University, Shanghai, 200032, China.

School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada.

出版信息

J Endocrinol Invest. 2017 Oct;40(10):1115-1123. doi: 10.1007/s40618-017-0680-4. Epub 2017 May 4.

Abstract

OBJECTIVE

Risk score (RS) model is a cost-effective tool to identify adults who are at high risk for diabetes. This study was to develop an RS model of type 2 diabetes (T2DM) prediction specifically for rural Chinese adults.

METHODS

A prospective whole cohort study (n = 28,251) and a sub-cohort study (n = 3043) were conducted from 2006-2014 and 2006-2008 to 2015 in rural Deqing, China. All participants were free of T2DM at baseline. Incident T2DM cases were identified through electronic health records, self-reported and fasting plasma glucose testing for the sub-cohort, respectively. RS models were constructed with coefficients (β) of Cox regression. Receiver-operating characteristic curves were plotted and the area under the curve (AUC) reflected the discriminating accuracy of an RS model.

RESULTS

By 2015, the incidence of T2DM was 3.3 and 7.7 per 1000 person-years in the whole cohort and the sub-cohort, respectively. Based on data from the whole cohort, the non-invasive RS model included age (4 points), overweight (2 points), obesity (4 points), family history of T2DM (3 points), meat diet (3 points), and hypertension (2 points). The plus-fasting plasma glucose (FPG) model added impaired fasting glucose (4 points). The AUC was 0.705 with a positive predictive value of 2.5% for the non-invasive model, and for the plus-FPG model the AUC was 0.754 with a positive predictive value of 2.5%. These models performed better as compared with 12 existing RS models for the study population.

CONCLUSIONS

Our non-invasive RS model can be used to identify individuals who are at high risk of T2DM as a simple, fast, and cost-effective tool for rural Chinese adults.

摘要

目的

风险评分(RS)模型是一种经济有效的工具,可用于识别糖尿病高危成年人。本研究旨在为中国农村成年人专门开发一种 2 型糖尿病(T2DM)预测的 RS 模型。

方法

2006-2014 年和 2006-2008 年至 2015 年期间,在中国德清农村进行了一项前瞻性整群研究(n=28251)和亚群研究(n=3043)。所有参与者在基线时均无 T2DM。通过电子健康记录、自我报告和亚群的空腹血糖检测分别确定 T2DM 事件病例。使用 Cox 回归的系数(β)构建 RS 模型。绘制受试者工作特征曲线,曲线下面积(AUC)反映 RS 模型的区分准确性。

结果

截至 2015 年,整群研究和亚群研究的 T2DM 发病率分别为 3.3 和 7.7/1000 人年。基于整群研究的数据,无创 RS 模型包括年龄(4 分)、超重(2 分)、肥胖(4 分)、T2DM 家族史(3 分)、肉类饮食(3 分)和高血压(2 分)。加测空腹血糖(FPG)模型增加了空腹血糖受损(4 分)。无创模型的 AUC 为 0.705,阳性预测值为 2.5%,加测 FPG 模型的 AUC 为 0.754,阳性预测值为 2.5%。与研究人群的 12 个现有 RS 模型相比,这些模型的性能更好。

结论

我们的无创 RS 模型可用于识别 T2DM 高危个体,作为一种简单、快速、经济有效的农村中国成年人的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验