Suppr超能文献

多模态融合多个静息态 fMRI 网络和 MRI 灰质通过并行多链路联合 ICA 揭示阿尔茨海默病中具有高度显著的功能/结构耦合。

Multimodal fusion of multiple rest fMRI networks and MRI gray matter via parallel multilink joint ICA reveals highly significant function/structure coupling in Alzheimer's disease.

机构信息

Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, Georgia, USA.

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.

出版信息

Hum Brain Mapp. 2023 Oct 15;44(15):5167-5179. doi: 10.1002/hbm.26456. Epub 2023 Aug 22.

Abstract

In this article, we focus on estimating the joint relationship between structural magnetic resonance imaging (sMRI) gray matter (GM), and multiple functional MRI (fMRI) intrinsic connectivity networks (ICNs). To achieve this, we propose a multilink joint independent component analysis (ml-jICA) method using the same core algorithm as jICA. To relax the jICA assumption, we propose another extension called parallel multilink jICA (pml-jICA) that allows for a more balanced weight distribution over ml-jICA/jICA. We assume a shared mixing matrix for both the sMRI and fMRI modalities, while allowing for different mixing matrices linking the sMRI data to the different ICNs. We introduce the model and then apply this approach to study the differences in resting fMRI and sMRI data from patients with Alzheimer's disease (AD) versus controls. The results of the pml-jICA yield significant differences with large effect sizes that include regions in overlapping portions of default mode network, and also hippocampus and thalamus. Importantly, we identify two joint components with partially overlapping regions which show opposite effects for AD versus controls, but were able to be separated due to being linked to distinct functional and structural patterns. This highlights the unique strength of our approach and multimodal fusion approaches generally in revealing potentially biomarkers of brain disorders that would likely be missed by a unimodal approach. These results represent the first work linking multiple fMRI ICNs to GM components within a multimodal data fusion model and challenges the typical view that brain structure is more sensitive to AD than fMRI.

摘要

在本文中,我们专注于估计结构磁共振成像 (sMRI) 灰质 (GM) 与多个功能磁共振成像 (fMRI) 内在连接网络 (ICN) 之间的联合关系。为了实现这一目标,我们提出了一种多链路联合独立成分分析 (ml-jICA) 方法,该方法使用与 jICA 相同的核心算法。为了放宽 jICA 的假设,我们提出了另一种扩展,称为并行多链路 jICA (pml-jICA),它允许在 ml-jICA/jICA 上实现更平衡的权重分布。我们假设 sMRI 和 fMRI 两种模态具有共享的混合矩阵,同时允许 sMRI 数据与不同的 ICN 之间具有不同的混合矩阵。我们引入了模型,然后应用该方法研究了阿尔茨海默病 (AD) 患者与对照组之间静息 fMRI 和 sMRI 数据的差异。pml-jICA 的结果产生了显著的差异,具有较大的效应量,包括默认模式网络重叠部分的区域,以及海马体和丘脑。重要的是,我们确定了两个具有部分重叠区域的联合成分,这些成分对 AD 与对照组的影响相反,但由于与不同的功能和结构模式相关联,因此可以将它们分开。这突出了我们的方法和多模态融合方法的独特优势,它们通常可以揭示单模态方法可能错过的大脑疾病的潜在生物标志物。这些结果代表了将多个 fMRI ICN 与多模态数据融合模型中的 GM 成分联系起来的第一项工作,并挑战了大脑结构比 fMRI 更敏感于 AD 的典型观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1034/10502647/3baf2306b619/HBM-44-5167-g008.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验