Williams David, Venardos Kylie M, Byrne Melissa, Joshi Mandar, Horlock Duncan, Lam Nicholas T, Gregorevic Paul, McGee Sean L, Kaye David M
Heart Failure Research Group, Baker IDI Heart & Diabetes Institute, Melbourne, Australia.
Heart Failure Research Group, Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Melbourne, Australia.
PLoS One. 2014 Aug 11;9(8):e104643. doi: 10.1371/journal.pone.0104643. eCollection 2014.
Impaired mitochondrial function is fundamental feature of heart failure (HF) and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO) metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury.
In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model) we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively) and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01) compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05). The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1) exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress.
These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury.
线粒体功能受损是心力衰竭(HF)和心肌缺血的基本特征。除了氧化应激增强的影响外,由线粒体一氧化氮合酶产生的一氧化氮(NO)代谢改变也被认为会影响线粒体功能。然而,精氨酸转运至线粒体的机制以及HF对此过程的影响尚不清楚。因此,我们旨在描述线粒体L-精氨酸转运特征,并研究线粒体L-精氨酸转运受损在心力衰竭和心肌损伤发病机制中起关键作用这一假说。
在从衰竭心脏分离的线粒体(绵羊快速起搏模型和小鼠Mst1转基因模型)中,我们发现与对照组相比,L-精氨酸摄取显著降低(分别为p<0.05和p<0.01),主要L-精氨酸转运体CAT-1的表达也显著降低(p<0.001,p<0.01)。这伴随着显著更低的NO生成和更高的3-硝基酪氨酸水平(均为p<0.05)。在暴露于缺氧-复氧应激的线粒体特异性过表达CAT-1(mtCAT1)的心肌细胞中,研究了线粒体L-精氨酸转运在调节心脏应激反应中的作用。mtCAT1心肌细胞的线粒体膜电位、呼吸和ATP周转显著改善,线粒体应激后活性氧生成和细胞死亡显著减少。
这些数据为L-精氨酸转运在线粒体生物学和心血管疾病中的作用提供了新的见解。增加线粒体L-精氨酸的可用性可能是一种针对涉及线粒体应激的心肌疾病(如心力衰竭和再灌注损伤)的新型治疗策略。