Inkeles Megan S, Scumpia Philip O, Swindell William R, Lopez David, Teles Rosane M B, Graeber Thomas G, Meller Stephan, Homey Bernhard, Elder James T, Gilliet Michel, Modlin Robert L, Pellegrini Matteo
Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA.
Division of Dermatology, University of California, Los Angeles, Los Angeles, California, USA.
J Invest Dermatol. 2015 Jan;135(1):151-159. doi: 10.1038/jid.2014.352. Epub 2014 Aug 11.
The ability to obtain gene expression profiles from human disease specimens provides an opportunity to identify relevant gene pathways, but is limited by the absence of data sets spanning a broad range of conditions. Here, we analyzed publicly available microarray data from 16 diverse skin conditions in order to gain insight into disease pathogenesis. Unsupervised hierarchical clustering separated samples by disease as well as common cellular and molecular pathways. Disease-specific signatures were leveraged to build a multi-disease classifier, which predicted the diagnosis of publicly and prospectively collected expression profiles with 93% accuracy. In one sample, the molecular classifier differed from the initial clinical diagnosis and correctly predicted the eventual diagnosis as the clinical presentation evolved. Finally, integration of IFN-regulated gene programs with the skin database revealed a significant inverse correlation between IFN-β and IFN-γ programs across all conditions. Our study provides an integrative approach to the study of gene signatures from multiple skin conditions, elucidating mechanisms of disease pathogenesis. In addition, these studies provide a framework for developing tools for personalized medicine toward the precise prediction, prevention, and treatment of disease on an individual level.
从人类疾病样本中获取基因表达谱的能力为识别相关基因通路提供了契机,但受限于缺乏涵盖广泛条件的数据集。在此,我们分析了来自16种不同皮肤疾病的公开可用微阵列数据,以便深入了解疾病发病机制。无监督层次聚类按疾病以及常见的细胞和分子通路对样本进行了分类。利用疾病特异性特征构建了一个多疾病分类器,该分类器对公开和前瞻性收集的表达谱诊断预测准确率达93%。在一个样本中,分子分类器与最初的临床诊断不同,且随着临床表现的演变正确地预测了最终诊断。最后,将干扰素调节基因程序与皮肤数据库整合显示,在所有条件下,干扰素-β和干扰素-γ程序之间存在显著的负相关。我们的研究为研究多种皮肤疾病的基因特征提供了一种综合方法,阐明了疾病发病机制。此外,这些研究为开发个性化医疗工具提供了一个框架,以在个体水平上实现对疾病的精确预测、预防和治疗。