Suppr超能文献

基因表达去卷积交互工具(GEDIT):从基因表达数据中准确量化细胞类型。

The Gene Expression Deconvolution Interactive Tool (GEDIT): accurate cell type quantification from gene expression data.

机构信息

Bioinformatics Interdepartmental Degree Program, Molecular Biology Institute, Department of Molecular Cellular and Developmental Biology, and Institute for Genomics and Proteomics, University of California Los Angeles, 610 Charles E Young Dr S, Los Angeles, CA 90095, USA.

Department of Mathematics, University of Utah, 155 1400 E, Salt Lake City, UT 84112, USA.

出版信息

Gigascience. 2021 Feb 16;10(2). doi: 10.1093/gigascience/giab002.

Abstract

BACKGROUND

The cell type composition of heterogeneous tissue samples can be a critical variable in both clinical and laboratory settings. However, current experimental methods of cell type quantification (e.g., cell flow cytometry) are costly, time consuming and have potential to introduce bias. Computational approaches that use expression data to infer cell type abundance offer an alternative solution. While these methods have gained popularity, most fail to produce accurate predictions for the full range of platforms currently used by researchers or for the wide variety of tissue types often studied.

RESULTS

We present the Gene Expression Deconvolution Interactive Tool (GEDIT), a flexible tool that utilizes gene expression data to accurately predict cell type abundances. Using both simulated and experimental data, we extensively evaluate the performance of GEDIT and demonstrate that it returns robust results under a wide variety of conditions. These conditions include multiple platforms (microarray and RNA-seq), tissue types (blood and stromal), and species (human and mouse). Finally, we provide reference data from 8 sources spanning a broad range of stromal and hematopoietic types in both human and mouse. GEDIT also accepts user-submitted reference data, thus allowing the estimation of any cell type or subtype, provided that reference data are available.

CONCLUSIONS

GEDIT is a powerful method for evaluating the cell type composition of tissue samples and provides excellent accuracy and versatility compared to similar tools. The reference database provided here also allows users to obtain estimates for a wide variety of tissue samples without having to provide their own data.

摘要

背景

异质组织样本的细胞类型组成在临床和实验室环境中都是一个关键变量。然而,目前用于细胞类型定量的实验方法(例如,细胞流式细胞术)既昂贵又耗时,并且有引入偏差的可能性。利用表达数据推断细胞类型丰度的计算方法提供了一种替代解决方案。虽然这些方法已经流行起来,但大多数方法无法针对研究人员目前使用的各种平台或经常研究的各种组织类型产生准确的预测。

结果

我们提出了基因表达去卷积交互式工具(GEDIT),这是一种利用基因表达数据准确预测细胞类型丰度的灵活工具。我们使用模拟和实验数据对 GEDIT 的性能进行了广泛评估,并证明它在多种条件下都能返回稳健的结果。这些条件包括多个平台(微阵列和 RNA-seq)、组织类型(血液和基质)和物种(人类和小鼠)。最后,我们提供了 8 个来源的参考数据,涵盖了人类和小鼠中广泛的基质和造血类型。GEDIT 还接受用户提交的参考数据,因此只要有参考数据,就可以估计任何细胞类型或亚型。

结论

GEDIT 是一种评估组织样本细胞类型组成的强大方法,与类似工具相比,它具有出色的准确性和多功能性。这里提供的参考数据库还允许用户在不提供自己数据的情况下获得各种组织样本的估计值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d97/7931818/8592bd97bb80/giab002fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验