Suppr超能文献

动态PET/CT图像的自动运动校正:使用体模和患者数据进行评估

Automated movement correction for dynamic PET/CT images: evaluation with phantom and patient data.

作者信息

Ye Hu, Wong Koon-Pong, Wardak Mirwais, Dahlbom Magnus, Kepe Vladimir, Barrio Jorge R, Nelson Linda D, Small Gary W, Huang Sung-Cheng

机构信息

Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America.

Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America.

出版信息

PLoS One. 2014 Aug 11;9(8):e103745. doi: 10.1371/journal.pone.0103745. eCollection 2014.

Abstract

Head movement during a dynamic brain PET/CT imaging results in mismatch between CT and dynamic PET images. It can cause artifacts in CT-based attenuation corrected PET images, thus affecting both the qualitative and quantitative aspects of the dynamic PET images and the derived parametric images. In this study, we developed an automated retrospective image-based movement correction (MC) procedure. The MC method first registered the CT image to each dynamic PET frames, then re-reconstructed the PET frames with CT-based attenuation correction, and finally re-aligned all the PET frames to the same position. We evaluated the MC method's performance on the Hoffman phantom and dynamic FDDNP and FDG PET/CT images of patients with neurodegenerative disease or with poor compliance. Dynamic FDDNP PET/CT images (65 min) were obtained from 12 patients and dynamic FDG PET/CT images (60 min) were obtained from 6 patients. Logan analysis with cerebellum as the reference region was used to generate regional distribution volume ratio (DVR) for FDDNP scan before and after MC. For FDG studies, the image derived input function was used to generate parametric image of FDG uptake constant (Ki) before and after MC. Phantom study showed high accuracy of registration between PET and CT and improved PET images after MC. In patient study, head movement was observed in all subjects, especially in late PET frames with an average displacement of 6.92 mm. The z-direction translation (average maximum = 5.32 mm) and x-axis rotation (average maximum = 5.19 degrees) occurred most frequently. Image artifacts were significantly diminished after MC. There were significant differences (P<0.05) in the FDDNP DVR and FDG Ki values in the parietal and temporal regions after MC. In conclusion, MC applied to dynamic brain FDDNP and FDG PET/CT scans could improve the qualitative and quantitative aspects of images of both tracers.

摘要

动态脑PET/CT成像过程中的头部运动会导致CT图像与动态PET图像不匹配。这会在基于CT的衰减校正PET图像中产生伪影,从而影响动态PET图像以及衍生的参数图像的定性和定量分析。在本研究中,我们开发了一种基于图像的自动回顾性运动校正(MC)程序。该MC方法首先将CT图像配准到每个动态PET帧,然后使用基于CT的衰减校正对PET帧进行重新重建,最后将所有PET帧重新对齐到相同位置。我们在霍夫曼体模以及神经退行性疾病患者或依从性差的患者的动态FDDNP和FDG PET/CT图像上评估了MC方法的性能。从12例患者中获取了动态FDDNP PET/CT图像(65分钟),从6例患者中获取了动态FDG PET/CT图像(60分钟)。以小脑为参考区域进行洛根分析,以生成MC前后FDDNP扫描的区域分布体积比(DVR)。对于FDG研究,使用图像衍生输入函数生成MC前后FDG摄取常数(Ki)的参数图像。体模研究表明PET与CT之间的配准精度高,且MC后PET图像得到改善。在患者研究中,所有受试者均观察到头部运动,尤其是在PET后期帧中,平均位移为6.92毫米。z方向平移(平均最大值 = 5.32毫米)和x轴旋转(平均最大值 = 5.19度)最为常见。MC后图像伪影明显减少。MC后,顶叶和颞叶区域的FDDNP DVR和FDG Ki值存在显著差异(P<0.05)。总之,应用于动态脑FDDNP和FDG PET/CT扫描的MC可以改善两种示踪剂图像的定性和定量分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b87/4128781/45f63e27b5c0/pone.0103745.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验