Mayr A, Binder H, Gefeller O, Schmid M
Andreas Mayr, Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054 Erlangen, Germany, E-mail:
Methods Inf Med. 2014;53(6):428-35. doi: 10.3414/ME13-01-0123. Epub 2014 Aug 12.
Boosting algorithms to simultaneously estimate and select predictor effects in statistical models have gained substantial interest during the last decade.
This review highlights recent methodological developments regarding boosting algorithms for statistical modelling especially focusing on topics relevant for biomedical research.
We suggest a unified framework for gradient boosting and likelihood-based boosting (statistical boosting) which have been addressed separately in the literature up to now.
The methodological developments on statistical boosting during the last ten years can be grouped into three different lines of research: i) efforts to ensure variable selection leading to sparser models, ii) developments regarding different types of predictor effects and how to choose them, iii) approaches to extend the statistical boosting framework to new regression settings.
Statistical boosting algorithms have been adapted to carry out unbiased variable selection and automated model choice during the fitting process and can nowadays be applied in almost any regression setting in combination with a large amount of different types of predictor effects.
在过去十年中,用于在统计模型中同时估计和选择预测变量效应的提升算法引起了广泛关注。
本综述重点介绍了统计建模中提升算法的最新方法发展,尤其关注与生物医学研究相关的主题。
我们提出了一个用于梯度提升和基于似然的提升(统计提升)的统一框架,到目前为止,这两种方法在文献中一直是分开讨论的。
过去十年中统计提升的方法发展可分为三个不同的研究方向:i)致力于确保变量选择以得到更稀疏的模型,ii)关于不同类型预测变量效应以及如何选择它们的发展,iii)将统计提升框架扩展到新回归设置的方法。
统计提升算法已被调整以在拟合过程中进行无偏变量选择和自动模型选择,如今几乎可以与大量不同类型的预测变量效应相结合应用于任何回归设置中。