Suppr超能文献

生物医学中统计增强技术的最新进展

An Update on Statistical Boosting in Biomedicine.

作者信息

Mayr Andreas, Hofner Benjamin, Waldmann Elisabeth, Hepp Tobias, Meyer Sebastian, Gefeller Olaf

机构信息

Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.

Institut für Statistik, Ludwig-Maximilians-Universität München, Munich, Germany.

出版信息

Comput Math Methods Med. 2017;2017:6083072. doi: 10.1155/2017/6083072. Epub 2017 Aug 2.

Abstract

Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.

摘要

在过去十年中,统计增强算法引发了大量研究。它们将强大的机器学习方法与经典统计建模相结合,具有自动变量选择和效应估计的隐式正则化等各种实际优势。它们极其灵活,因为底层的基学习器(定义解释变量效应类型的回归函数)可以与任何类型的损失函数(要优化的目标函数,定义回归设置的类型)相结合。在这篇综述文章中,我们重点介绍了统计增强在变量选择、函数回归和高级生存时间建模方面的最新方法进展。此外,我们还简要概述了统计增强在生物医学中的相关应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8402/5558647/673bf60ae723/CMMM2017-6083072.figbox.001.jpg

相似文献

1
An Update on Statistical Boosting in Biomedicine.
Comput Math Methods Med. 2017;2017:6083072. doi: 10.1155/2017/6083072. Epub 2017 Aug 2.
2
Extending statistical boosting. An overview of recent methodological developments.
Methods Inf Med. 2014;53(6):428-35. doi: 10.3414/ME13-01-0123. Epub 2014 Aug 12.
3
The evolution of boosting algorithms. From machine learning to statistical modelling.
Methods Inf Med. 2014;53(6):419-27. doi: 10.3414/ME13-01-0122. Epub 2014 Aug 12.
4
Randomized boosting with multivariable base-learners for high-dimensional variable selection and prediction.
BMC Bioinformatics. 2021 Sep 16;22(1):441. doi: 10.1186/s12859-021-04340-z.
5
Boosting - an unusual yet attractive optimiser.
Methods Inf Med. 2014;53(6):417-8. doi: 10.3414/ME13-10-0123.
6
Robust statistical boosting with quantile-based adaptive loss functions.
Int J Biostat. 2022 Aug 10;19(1):111-129. doi: 10.1515/ijb-2021-0127. eCollection 2023 May 1.
7
Discussion of "the evolution of boosting algorithms" and "extending statistical boosting".
Methods Inf Med. 2014;53(6):436-45. doi: 10.3414/13100122. Epub 2014 Nov 14.
8
Boosting multi-state models.
Lifetime Data Anal. 2016 Apr;22(2):241-62. doi: 10.1007/s10985-015-9329-9. Epub 2015 May 20.
9
Deselection of base-learners for statistical boosting-with an application to distributional regression.
Stat Methods Med Res. 2022 Feb;31(2):207-224. doi: 10.1177/09622802211051088. Epub 2021 Dec 9.
10
Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques.
Comput Math Methods Med. 2021 Nov 15;2021:4384035. doi: 10.1155/2021/4384035. eCollection 2021.

引用本文的文献

3
Evaluation of Neoplasia, Treatments, and Survival in Lizard Species.
Animals (Basel). 2024 May 7;14(10):1395. doi: 10.3390/ani14101395.
4
Adaptive monitoring in action-what drives arthropod diversity and composition in central European beech forests?
Environ Monit Assess. 2024 Apr 24;196(5):470. doi: 10.1007/s10661-024-12592-4.
6
Proteomics biomarker discovery for individualized prevention of familial pancreatic cancer using statistical learning.
PLoS One. 2023 Jan 26;18(1):e0280399. doi: 10.1371/journal.pone.0280399. eCollection 2023.
7
A boosting first-hitting-time model for survival analysis in high-dimensional settings.
Lifetime Data Anal. 2023 Apr;29(2):420-440. doi: 10.1007/s10985-022-09553-9. Epub 2022 Apr 27.
8
A Multi-Institutional Collaboration to Understand Neoplasia, Treatment and Survival of Snakes.
Animals (Basel). 2022 Jan 21;12(3):258. doi: 10.3390/ani12030258.
10
Galaxy-ML: An accessible, reproducible, and scalable machine learning toolkit for biomedicine.
PLoS Comput Biol. 2021 Jun 1;17(6):e1009014. doi: 10.1371/journal.pcbi.1009014. eCollection 2021 Jun.

本文引用的文献

1
Probing for Sparse and Fast Variable Selection with Model-Based Boosting.
Comput Math Methods Med. 2017;2017:1421409. doi: 10.1155/2017/1421409. Epub 2017 Jul 31.
2
Pathway-Based Kernel Boosting for the Analysis of Genome-Wide Association Studies.
Comput Math Methods Med. 2017;2017:6742763. doi: 10.1155/2017/6742763. Epub 2017 Jul 13.
3
Comparison and Contrast of Two General Functional Regression Modeling Frameworks.
Stat Modelling. 2017 Feb;17(1-2):59-85. doi: 10.1177/1471082X16681875. Epub 2017 Feb 16.
4
Boosting joint models for longitudinal and time-to-event data.
Biom J. 2017 Nov;59(6):1104-1121. doi: 10.1002/bimj.201600158. Epub 2017 Mar 21.
5
Predicting CYP2D6 phenotype from resting brain perfusion images by gradient boosting.
Psychiatry Res Neuroimaging. 2017 Jan 30;259:16-24. doi: 10.1016/j.pscychresns.2016.11.005. Epub 2016 Nov 22.
6
A statistical model for the analysis of beta values in DNA methylation studies.
BMC Bioinformatics. 2016 Nov 22;17(1):480. doi: 10.1186/s12859-016-1347-4.
7
Promoting similarity of model sparsity structures in integrative analysis of cancer genetic data.
Stat Med. 2017 Feb 10;36(3):509-559. doi: 10.1002/sim.7138. Epub 2016 Sep 25.
8
Approaches to Regularized Regression - A Comparison between Gradient Boosting and the Lasso.
Methods Inf Med. 2016 Oct 17;55(5):422-430. doi: 10.3414/ME16-01-0033. Epub 2016 Sep 14.
9
Boosted structured additive regression for Escherichia coli fed-batch fermentation modeling.
Biotechnol Bioeng. 2017 Feb;114(2):321-334. doi: 10.1002/bit.26073. Epub 2016 Aug 30.
10
[The first biologic for rheumatoid arthritis: factors influencing the therapeutic decision].
Z Rheumatol. 2017 Apr;76(3):210-218. doi: 10.1007/s00393-016-0174-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验