Mayr Andreas, Hofner Benjamin, Waldmann Elisabeth, Hepp Tobias, Meyer Sebastian, Gefeller Olaf
Institut für Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
Institut für Statistik, Ludwig-Maximilians-Universität München, Munich, Germany.
Comput Math Methods Med. 2017;2017:6083072. doi: 10.1155/2017/6083072. Epub 2017 Aug 2.
Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression, and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine.
在过去十年中,统计增强算法引发了大量研究。它们将强大的机器学习方法与经典统计建模相结合,具有自动变量选择和效应估计的隐式正则化等各种实际优势。它们极其灵活,因为底层的基学习器(定义解释变量效应类型的回归函数)可以与任何类型的损失函数(要优化的目标函数,定义回归设置的类型)相结合。在这篇综述文章中,我们重点介绍了统计增强在变量选择、函数回归和高级生存时间建模方面的最新方法进展。此外,我们还简要概述了统计增强在生物医学中的相关应用。