Suppr超能文献

增强多状态模型。

Boosting multi-state models.

作者信息

Reulen Holger, Kneib Thomas

机构信息

University of Göttingen, Göttingen, Germany.

出版信息

Lifetime Data Anal. 2016 Apr;22(2):241-62. doi: 10.1007/s10985-015-9329-9. Epub 2015 May 20.

Abstract

One important goal in multi-state modelling is to explore information about conditional transition-type-specific hazard rate functions by estimating influencing effects of explanatory variables. This may be performed using single transition-type-specific models if these covariate effects are assumed to be different across transition-types. To investigate whether this assumption holds or whether one of the effects is equal across several transition-types (cross-transition-type effect), a combined model has to be applied, for instance with the use of a stratified partial likelihood formulation. Here, prior knowledge about the underlying covariate effect mechanisms is often sparse, especially about ineffectivenesses of transition-type-specific or cross-transition-type effects. As a consequence, data-driven variable selection is an important task: a large number of estimable effects has to be taken into account if joint modelling of all transition-types is performed. A related but subsequent task is model choice: is an effect satisfactory estimated assuming linearity, or is the true underlying nature strongly deviating from linearity? This article introduces component-wise Functional Gradient Descent Boosting (short boosting) for multi-state models, an approach performing unsupervised variable selection and model choice simultaneously within a single estimation run. We demonstrate that features and advantages in the application of boosting introduced and illustrated in classical regression scenarios remain present in the transfer to multi-state models. As a consequence, boosting provides an effective means to answer questions about ineffectiveness and non-linearity of single transition-type-specific or cross-transition-type effects.

摘要

多状态建模的一个重要目标是通过估计解释变量的影响效应来探索关于特定条件转换类型危险率函数的信息。如果假设这些协变量效应在不同转换类型之间不同,则可以使用特定单一转换类型模型来执行此操作。为了研究该假设是否成立,或者几种转换类型之间的效应之一是否相等(跨转换类型效应),必须应用组合模型,例如使用分层偏似然公式。在这里,关于潜在协变量效应机制的先验知识通常很少,尤其是关于特定转换类型或跨转换类型效应的无效性。因此,数据驱动的变量选择是一项重要任务:如果对所有转换类型进行联合建模,则必须考虑大量可估计的效应。一个相关但后续的任务是模型选择:假设线性,效应估计是否令人满意,或者真正的潜在性质是否与线性有很大偏差?本文介绍了用于多状态模型的逐分量函数梯度下降提升(简称为提升),这是一种在单次估计运行中同时执行无监督变量选择和模型选择的方法。我们证明,在经典回归场景中引入和说明的提升应用中的特征和优势在转移到多状态模型时仍然存在。因此,提升提供了一种有效的手段来回答关于特定单一转换类型或跨转换类型效应的无效性和非线性问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验