Chen Rongyi, Zhang Guoxue, Zhou Ying, Li Nan, Lin Jiaxi
Department of Dermatology, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China.
Diagn Pathol. 2014 Aug 13;9:155. doi: 10.1186/s13000-014-0155-2.
BACKGROUND: The prognosis of patients with metastatic melanomas is extremely heterogeneous. Therefore, identifying high-risk subgroups by using innovative prediction models would help to improve selection of appropriate management options. METHODS: In this study, two datasets (GSE7929 and GSE7956) of mRNA expression microarray in an animal melanoma model were normalized by frozen Robust Multi-Array Analysis and then combined by the distance-weighted discrimination method to identify time course-dependent metastasis-related gene signatures by Biometric Research Branch-ArrayTools (BRB)-ArrayTools. Then two datasets (GSE8401 and GSE19234) of clinical melanoma samples with relevant clinical and survival data were used to validate the prognosis signature. RESULTS: A novel 192-gene set that varies significantly in parallel with the increasing of metastatic potentials was identified in the animal melanoma model. Further, this gene signature was validated to correlate with poor prognosis of human metastatic melanomas but not of primary melanomas in two independent datasets. Furthermore, multivariate Cox proportional hazards regression analyses demonstrated that the prognostic value of the 192-gene set is independent of the TNM stage and has higher areas under the receiver operating characteristic curve than stage information in both validation datasets. CONCLUSION: Our findings suggest that a time course-dependent metastasis-related gene expression signature is useful in predicting survival of malignant melanomas and might be useful in informing treatment decisions for these patients.
背景:转移性黑色素瘤患者的预后极不均匀。因此,使用创新的预测模型识别高危亚组将有助于改善合适治疗方案的选择。 方法:在本研究中,通过冷冻的稳健多阵列分析对动物黑色素瘤模型中mRNA表达微阵列的两个数据集(GSE7929和GSE7956)进行标准化,然后通过距离加权判别法进行合并,以通过生物统计学研究分支阵列工具(BRB)-阵列工具识别与时间进程相关的转移相关基因特征。然后使用具有相关临床和生存数据的临床黑色素瘤样本的两个数据集(GSE8401和GSE19234)来验证预后特征。 结果:在动物黑色素瘤模型中鉴定出一个新的192基因集,其随着转移潜能的增加而显著平行变化。此外,在两个独立的数据集中,该基因特征被验证与人类转移性黑色素瘤的不良预后相关,但与原发性黑色素瘤无关。此外,多变量Cox比例风险回归分析表明,192基因集的预后价值独立于TNM分期,并且在两个验证数据集中的受试者工作特征曲线下面积均高于分期信息。 结论:我们的研究结果表明,一个与时间进程相关的转移相关基因表达特征可用于预测恶性黑色素瘤的生存情况,并且可能有助于为这些患者的治疗决策提供参考。
J Natl Cancer Inst. 2006-4-5
Clin Cancer Res. 2015-11-1
Clin Cancer Res. 2019-9-12
Front Oncol. 2022-10-25
Diagn Pathol. 2013-5-21
BMC Bioinformatics. 2011-9-16
J Dermatol Sci. 2011-6-23
J Am Stat Assoc. 2010-3-1
Melanoma Res. 2010-6
Proc Natl Acad Sci U S A. 2009-11-13
Cancer Inform. 2007-2-4
Am J Pathol. 2009-4