Suppr超能文献

利用自然语言处理技术根据肺栓塞的存在、慢性程度和位置对CT肺血管造影报告进行分类。

Classification of CT pulmonary angiography reports by presence, chronicity, and location of pulmonary embolism with natural language processing.

作者信息

Yu Sheng, Kumamaru Kanako K, George Elizabeth, Dunne Ruth M, Bedayat Arash, Neykov Matey, Hunsaker Andetta R, Dill Karin E, Cai Tianxi, Rybicki Frank J

机构信息

Partners HealthCare Personalized Medicine, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, United States.

Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA, United States.

出版信息

J Biomed Inform. 2014 Dec;52:386-93. doi: 10.1016/j.jbi.2014.08.001. Epub 2014 Aug 10.

Abstract

In this paper we describe an efficient tool based on natural language processing for classifying the detail state of pulmonary embolism (PE) recorded in CT pulmonary angiography reports. The classification tasks include: PE present vs. absent, acute PE vs. others, central PE vs. others, and subsegmental PE vs. others. Statistical learning algorithms were trained with features extracted using the NLP tool and gold standard labels obtained via chart review from two radiologists. The areas under the receiver operating characteristic curves (AUC) for the four tasks were 0.998, 0.945, 0.987, and 0.986, respectively. We compared our classifiers with bag-of-words Naive Bayes classifiers, a standard text mining technology, which gave AUC 0.942, 0.765, 0.766, and 0.712, respectively.

摘要

在本文中,我们描述了一种基于自然语言处理的高效工具,用于对CT肺血管造影报告中记录的肺栓塞(PE)详细状态进行分类。分类任务包括:PE存在与否、急性PE与其他情况、中央型PE与其他情况、亚段型PE与其他情况。使用自然语言处理工具提取特征,并通过两位放射科医生的病历审查获得金标准标签,以此训练统计学习算法。这四项任务的受试者操作特征曲线(AUC)下面积分别为0.998、0.945、0.987和0.986。我们将我们的分类器与词袋朴素贝叶斯分类器(一种标准文本挖掘技术)进行了比较,该技术给出的AUC分别为0.942、0.765、0.766和0.712。

相似文献

10
Deep Learning to Classify Radiology Free-Text Reports.深度学习在放射科自由文本报告分类中的应用
Radiology. 2018 Mar;286(3):845-852. doi: 10.1148/radiol.2017171115. Epub 2017 Nov 13.

引用本文的文献

9
High-throughput phenotyping with temporal sequences.高通量表型分析与时间序列。
J Am Med Inform Assoc. 2021 Mar 18;28(4):772-781. doi: 10.1093/jamia/ocaa288.

本文引用的文献

1
Discovering body site and severity modifiers in clinical texts.发现临床文本中的身体部位和严重程度修饰语。
J Am Med Inform Assoc. 2014 May-Jun;21(3):448-54. doi: 10.1136/amiajnl-2013-001766. Epub 2013 Oct 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验